Local probe of single phonon dynamics in warm ion crystals

The detailed characterization of non-trivial coherence properties of composite quantum systems of increasing size is an indispensable prerequisite for scalable quantum computation, as well as for understanding non-equilibrium many-body physics. Here, we show how autocorrelation functions in an interacting system of phonons as well as the quantum discord between distinct degrees of freedoms can be extracted from a small controllable part of the system. As a benchmark, we show this in chains of up to 42 trapped ions, by tracing a single phonon excitation through interferometric measurements of only a single ion in the chain. We observe the spreading and partial refocusing of the excitation in the chain, even on a background of thermal excitations. We further show how this local observable reflects the dynamical evolution of quantum discord between the electronic state and the vibrational degrees of freedom of the probe ion.

[1]  Quantum quenches of ion Coulomb crystals across structural instabilities. II. Thermal effects , 2013, 1301.3646.

[2]  R. Barends,et al.  Observation of topological transitions in interacting quantum circuits , 2014, Nature.

[3]  Davide Girolami,et al.  Quantum Discord Determines the Interferometric Power of Quantum States , 2013, 1309.1472.

[4]  B. Lanyon,et al.  Spectroscopy of Interacting Quasiparticles in Trapped Ions. , 2015, Physical review letters.

[5]  T. Schaetz,et al.  Simulating a quantum magnet with trapped ions , 2008 .

[6]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[7]  C. F. Roos,et al.  Investigating a qubit candidate: Spectroscopy on the S 1 / 2 to D 5 / 2 transition of a trapped calcium ion in a linear Paul trap , 2000 .

[8]  Gerardo Adesso,et al.  All nonclassical correlations can be activated into distillable entanglement. , 2011, Physical review letters.

[9]  Markus Greiner,et al.  A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice , 2009, Nature.

[10]  D. Basko,et al.  Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states , 2005, cond-mat/0506617.

[11]  Noise-induced transport in the motion of trapped ions , 2016, 1610.04869.

[12]  A. Buchleitner,et al.  Inelastic multiple scattering of interacting bosons in weak random potentials. , 2012, Physical review letters.

[13]  A. Buchleitner,et al.  Local detection of quantum correlations with a single trapped ion , 2013, Nature Physics.

[14]  Tommaso Calarco,et al.  Ramsey interferometry with a spin embedded in a Coulomb chain , 2008 .

[15]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[16]  Igor E. Mazets,et al.  Experimental observation of a generalized Gibbs ensemble , 2014, Science.

[17]  Hermann Kampermann,et al.  Quantum cost for sending entanglement. , 2012, Physical review letters.

[18]  J. Smith,et al.  Coherent imaging spectroscopy of a quantum many-body spin system , 2014, Science.

[19]  S. Ravets,et al.  Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models , 2016, Nature.

[20]  D. James Quantum dynamics of cold trapped ions with application to quantum computation , 1997, quant-ph/9702053.

[21]  S. Mukamel,et al.  Nonlinear spectroscopy of controllable many-body quantum systems , 2013, 1312.3365.

[22]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[23]  A. Buchleitner,et al.  Quantum Transport on Disordered and Noisy Networks: An Interplay of Structural Complexity and Uncertainty , 2016 .

[24]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[25]  M. Lukin,et al.  Probing real-space and time-resolved correlation functions with many-body Ramsey interferometry. , 2013, Physical review letters.

[26]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[27]  Interaction-induced decoherence of atomic BLOCH oscillations. , 2003, Physical review letters.

[28]  E. Demler,et al.  Far-from-equilibrium spin transport in Heisenberg quantum magnets. , 2014, Physical review letters.

[29]  H. Häffner,et al.  Energy transport in trapped ion chains , 2013, 1312.5786.

[30]  F. Schmidt-Kaler,et al.  Two-dimensional spectroscopy for the study of ion coulomb crystals. , 2014, Physical review letters.

[31]  Quantum quenches of ion Coulomb crystals across structural instabilities , 2012, 1206.4171.

[32]  T. Schaetz,et al.  Time-Resolved Observation of Thermalization in an Isolated Quantum System. , 2015, Physical review letters.

[33]  Alessandro Silva,et al.  Colloquium: Nonequilibrium dynamics of closed interacting quantum systems , 2010, 1007.5331.

[34]  Hermann Kampermann,et al.  Linking quantum discord to entanglement in a measurement. , 2010, Physical review letters.

[35]  S. Girvin,et al.  Cooling and Autonomous Feedback in a Bose-Hubbard Chain with Attractive Interactions. , 2015, Physical review letters.

[36]  A. Buchleitner,et al.  Probing polariton dynamics in trapped ions with phase-coherent two-dimensional spectroscopy. , 2015, The Journal of chemical physics.

[37]  V. Vedral,et al.  Entanglement in Many-Body Systems , 2007, quant-ph/0703044.

[38]  A. Buchleitner,et al.  The Local Detection Method: Dynamical Detection of Quantum Discord with Local Operations , 2016, 1606.09049.

[39]  Manuel Gessner,et al.  Local witness for bipartite quantum discord , 2013, 1301.1022.

[41]  A. Buchleitner,et al.  Observing a quantum phase transition by measuring a single spin , 2014, 1403.4066.

[42]  Dorian Gangloff,et al.  Tuning friction atom-by-atom in an ion-crystal simulator , 2014, Science.

[43]  S. Mukamel,et al.  Nonlinear spectroscopy of trapped ions , 2014, 1410.1694.

[44]  Manuel Gessner,et al.  Detecting nonclassical system-environment correlations by local operations. , 2011, Physical review letters.