Properties of the double half-heusler alloy ScNbNi2Sn2 with respect to structural, electronic, optical, and thermoelectric aspects

[1]  Z. Charifi,et al.  First-principles calculations to investigate strong Half-metallic ferromagnetic and thermoelectric sensibility of LiCrX (X = S, Se, and Te) alloys , 2022, Journal of Magnetism and Magnetic Materials.

[2]  Z. Charifi,et al.  Electronic structure, optical and vibrational properties of Ti2FeNiSb2 and Ti2Ni2InSb double half heusler alloys , 2020 .

[3]  H. Borrmann,et al.  Thermal and Electronic Transport Properties of the Half-Heusler Phase ScNiSb , 2019, Materials.

[4]  M. Saeed,et al.  Ab initio full-potential study of the fundamental properties of chalcopyrite semiconductors XPN2 (X = H, Cu) , 2019, Materials Research Express.

[5]  G. J. Snyder,et al.  Double Half-Heuslers , 2019, Joule.

[6]  David J. Singh,et al.  Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance , 2019, Nature Communications.

[7]  G. J. Snyder,et al.  Temperature Dependent n‐Type Self Doping in Nominally 19‐Electron Half‐Heusler Thermoelectric Materials , 2018, Advanced Energy Materials.

[8]  Jun Mao,et al.  Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency , 2018, Nature Communications.

[9]  Gang Chen,et al.  Advances in thermoelectrics , 2018 .

[10]  David J. Singh,et al.  Large thermoelectric power factor from crystal symmetry-protected non-bonding orbital in half-Heuslers , 2018, Nature Communications.

[11]  G. J. Snyder,et al.  High Thermoelectric Performance in SnTe–AgSbTe2 Alloys from Lattice Softening, Giant Phonon–Vacancy Scattering, and Valence Band Convergence , 2018 .

[12]  E. Bauer,et al.  (V,Nb)-doped half Heusler alloys based on {Ti,Zr,Hf}NiSn with high ZT , 2017 .

[13]  Claudia Felser,et al.  Engineering half-Heusler thermoelectric materials using Zintl chemistry , 2016 .

[14]  Dezhi Wang,et al.  Synthesis and thermoelectric properties of n-type half-Heusler compound VCoSb with valence electron count of 19 , 2016 .

[15]  Xinbing Zhao,et al.  Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials , 2015, Nature Communications.

[16]  M. Karppinen,et al.  A2B′B″O6 perovskites: A review , 2015 .

[17]  G. J. Snyder,et al.  Characterization of Lorenz number with Seebeck coefficient measurement , 2015 .

[18]  Liping Yu,et al.  Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. , 2014, Nature chemistry.

[19]  Liping Yu,et al.  Design and discovery of a novel half-Heusler transparent hole conductor made of all-metallic heavy elements , 2014, Nature Communications.

[20]  Zhong Chen,et al.  A Review on Visible Light Active Perovskite-Based Photocatalysts , 2014, Molecules.

[21]  G. J. Snyder,et al.  Phonon engineering through crystal chemistry , 2011 .

[22]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[23]  Claudia Felser,et al.  Simple rules for the understanding of Heusler compounds , 2011 .

[24]  G. J. Snyder,et al.  Traversing the Metal‐Insulator Transition in a Zintl Phase: Rational Enhancement of Thermoelectric Efficiency in Yb14Mn1−xAlxSb11 , 2008 .

[25]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[26]  T. Seebeck,et al.  Recent advances on thermoelectric materials , 2008, 1106.0888.

[27]  David R. Clarke,et al.  Oxide materials with low thermal conductivity , 2007 .

[28]  David J. Singh,et al.  BoltzTraP. A code for calculating band-structure dependent quantities , 2006, Comput. Phys. Commun..

[29]  S. Sakurada,et al.  Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds , 2005 .

[30]  Víctor Luaña,et al.  GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model☆ , 2004 .

[31]  K.-I. Kobayashi,et al.  Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure , 1998, Nature.

[32]  Mark T. Anderson,et al.  Lanthanum copper tin oxide (La2CuSnO6): a new perovskite-related compound with an unusual arrangement of B cations , 1991 .

[33]  G. A. Slack,et al.  Nonmetallic crystals with high thermal conductivity , 1973 .

[34]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.