Sulfamethazine-based pH-sensitive hydrogels with potential application for transcatheter arterial chemoembolization therapy.

[1]  Quang Vinh Nguyen,et al.  Injectable polymeric hydrogels for the delivery of therapeutic agents: A review , 2015 .

[2]  Yi-Xiang J. Wang,et al.  Transcatheter embolization therapy in liver cancer: an update of clinical evidences. , 2015, Chinese journal of cancer research = Chung-kuo yen cheng yen chiu.

[3]  J. Willatt,et al.  Image-guided therapies in the treatment of hepatocellular carcinoma: A multidisciplinary perspective. , 2015, World journal of hepatology.

[4]  Doo Sung Lee,et al.  In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[5]  P. Cui,et al.  Combination of percutaneous radiofrequency ablation with transarterial chemoembolization for hepatocellular carcinoma: observation of clinical effects. , 2014, Chinese journal of cancer research = Chung-kuo yen cheng yen chiu.

[6]  Eben Alsberg,et al.  Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine. , 2014, Progress in polymer science.

[7]  R. Omary,et al.  Poly(lactide-co-glycolide) microspheres for MRI-monitored transcatheter delivery of sorafenib to liver tumors. , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[8]  Qian Zhou,et al.  Doxorubicin‐eluting beads versus conventional transarterial chemoembolization for the treatment of hepatocellular carcinoma , 2014, Journal of gastroenterology and hepatology.

[9]  Arti Vashist,et al.  Recent advances in hydrogel based drug delivery systems for the human body. , 2014, Journal of materials chemistry. B.

[10]  B. Guiu,et al.  Use of Lipiodol as a drug-delivery system for transcatheter arterial chemoembolization of hepatocellular carcinoma: a review. , 2013, Critical reviews in oncology/hematology.

[11]  Jason A Burdick,et al.  Rational design of network properties in guest-host assembled and shear-thinning hyaluronic acid hydrogels. , 2013, Biomacromolecules.

[12]  B. Jeong,et al.  Recent progress of in situ formed gels for biomedical applications , 2013 .

[13]  D. S. Lee,et al.  Dually cationic and anionic pH/temperature-sensitive injectable hydrogels and potential application as a protein carrier. , 2012, Chemical communications.

[14]  Ashwin Rammohan,et al.  Embolization of liver tumors: Past, present and future. , 2012, World journal of radiology.

[15]  D. S. Lee,et al.  Synthesis and characterization of poly(amino urea urethane)-based block copolymer and its potential application as injectable pH/temperature-sensitive hydrogel for protein carrier , 2012 .

[16]  A. Lewis,et al.  Locoregional drug delivery using image-guided intra-arterial drug eluting bead therapy. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[17]  T. Vogl,et al.  Transcatheter Treatment of Hepatocellular Carcinoma with Doxorubicin-loaded DC Bead (DEBDOX): Technical Recommendations , 2011, CardioVascular and Interventional Radiology.

[18]  Doo Sung Lee,et al.  Injectable Block Copolymer Hydrogels: Achievements and Future Challenges for Biomedical Applications , 2011 .

[19]  D. S. Lee,et al.  Biodegradable pH/temperature-sensitive oligo(β-amino ester urethane) hydrogels for controlled release of doxorubicin. , 2011, Acta biomaterialia.

[20]  P. Huppert Current concepts in transarterial chemoembolization of hepatocellular carcinoma , 2011, Abdominal Imaging.

[21]  Eleni Liapi,et al.  Transcatheter intraarterial therapies: rationale and overview. , 2011, Radiology.

[22]  D. S. Lee,et al.  Sustained delivery of doxorubicin using biodegradable pH/temperature-sensitive poly(ethylene glycol)-poly(β-amino ester urethane) multiblock copolymer hydrogels , 2011 .

[23]  J. Prieto,et al.  Transarterial therapies for hepatocellular carcinoma. , 2011, Expert opinion on pharmacotherapy.

[24]  D. S. Lee,et al.  Biodegradable oligo(amidoamine/β-amino ester) hydrogels for controlled insulin delivery , 2011 .

[25]  J. Geschwind,et al.  Transcatheter Arterial Chemoembolization for Liver Cancer: Is It Time to Distinguish Conventional from Drug-Eluting Chemoembolization? , 2011, CardioVascular and Interventional Radiology.

[26]  C. Mathers,et al.  Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008 , 2010, International journal of cancer.

[27]  S. W. Kim,et al.  pH/temperature-sensitive 4-arm poly(ethylene glycol)-poly(amino urethane) copolymer hydrogels , 2010 .

[28]  D. S. Lee,et al.  Injectable biodegradable hydrogels. , 2010, Macromolecular bioscience.

[29]  G. Gasbarrini,et al.  Transarterial chemoembolization (TACE) for unresectable HCC: a new life begins? , 2010, European review for medical and pharmacological sciences.

[30]  S. Carter,et al.  Drug-eluting bead therapy in primary and metastatic disease of the liver. , 2009, HPB : the official journal of the International Hepato Pancreato Biliary Association.

[31]  D. S. Lee,et al.  pH-sensitive and bioadhesive poly(β-amino ester)-poly(ethylene glycol)-poly(β-amino ester) triblock copolymer hydrogels with potential for drug delivery in oral mucosal surfaces , 2009 .

[32]  Sung W. Shin The Current Practice of Transarterial Chemoembolization for the Treatment of Hepatocellular Carcinoma , 2009, Korean journal of radiology.

[33]  M. Kurisawa,et al.  An injectable hyaluronic acid-tyramine hydrogel system for protein delivery. , 2009, Journal of controlled release : official journal of the Controlled Release Society.

[34]  Dong Kuk Park,et al.  pH- and temperature-sensitive multiblock copolymer hydrogels composed of poly(ethylene glycol) and poly(amino urethane) , 2008 .

[35]  Chaoliang He,et al.  In situ gelling aqueous solutions of pH-and temperature-sensitive poly(ester amino urethane)s , 2008 .

[36]  D. S. Lee,et al.  Functionalized injectable hydrogels for controlled insulin delivery. , 2008, Biomaterials.

[37]  Chaoliang He,et al.  In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[38]  W. Hennink,et al.  In situ gelling hydrogels for pharmaceutical and biomedical applications. , 2008, International journal of pharmaceutics.

[39]  D. Kohane,et al.  HYDROGELS IN DRUG DELIVERY: PROGRESS AND CHALLENGES , 2008 .

[40]  K. Tai,et al.  A phase I/II trial of chemoembolization for hepatocellular carcinoma using a novel intra-arterial drug-eluting bead. , 2007, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[41]  Hesson Chung,et al.  FDG-PET for Evaluating the Antitumor Effect of Intraarterial 3-Bromopyruvate Administration in a Rabbit VX2 Liver Tumor Model , 2007, Korean journal of radiology.

[42]  R. Lamanna,et al.  Novel hydrogels via click chemistry: synthesis and potential biomedical applications. , 2007, Biomacromolecules.

[43]  J. Bruix,et al.  Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. , 2007, Journal of hepatology.

[44]  Ick Chan Kwon,et al.  pH- and temperature-sensitive, injectable, biodegradable block copolymer hydrogels as carriers for paclitaxel. , 2007, International journal of pharmaceutics.

[45]  Sung Wan Kim,et al.  Sulfonamide-based pH- and temperature-sensitive biodegradable block copolymer hydrogels. , 2006, Biomacromolecules.

[46]  Jae Sun Yoo,et al.  Novel injectable pH and temperature sensitive block copolymer hydrogel. , 2005, Biomacromolecules.

[47]  V. Mazzaferro,et al.  Resection and Liver Transplantation for Hepatocellular Carcinoma , 2005, Seminars in liver disease.

[48]  R. Langer,et al.  Prolongation of sciatic nerve blockade by in situ cross-linked hyaluronic acid. , 2004, Biomaterials.

[49]  Y. Bae,et al.  Sulfonamide based pH-sensitive polymeric micelles: physicochemical characteristics and pH-dependent aggregation , 2003 .

[50]  Y. Bae,et al.  pH-Induced Volume-Phase Transition of Hydrogels Containing Sulfonamide Side Group by Reversible Crystal Formation , 2001 .

[51]  J. Hubbell,et al.  Protein delivery from materials formed by self-selective conjugate addition reactions. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[52]  You Han Bae,et al.  Sulfonamide-containing polymers : A New class of pH-sensitive polymers and gels , 2001 .

[53]  C. van Nostrum,et al.  Physically crosslinked dextran hydrogels by stereocomplex formation of lactic acid oligomers: degradation and protein release behavior. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[54]  J. H. Park,et al.  Stable lipiodolized emulsions for hepatoma targeting and treatment by transcatheter arterial chemoembolization. , 1998, Journal of controlled release : official journal of the Controlled Release Society.

[55]  Sung Wan Kim,et al.  Biodegradable block copolymers as injectable drug-delivery systems , 1997, Nature.

[56]  E. Lobel,et al.  A novel in situ-forming ophthalmic drug delivery system from alginates undergoing gelation in the eye , 1997 .

[57]  D. Leeper,et al.  Extracellular pH distribution in human tumours. , 1995, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[58]  H. Bismuth,et al.  Liver Resection Versus Transplantation for Hepatocellular Carcinoma in Cirrhotic Patients , 1993, Annals of surgery.

[59]  Jeffrey A. Hubbell,et al.  Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(.alpha.-hydroxy acid) diacrylate macromers , 1993 .