Homotopy parameter bounding in increasing the robustness of homotopy continuation methods in multiplicity studies

Homotopy continuation methods are globally convergent methods, which can also be utilized in multiplicity studies. However, when the starting point and/or solution multiplicities lie on separate homotopy path branches, one or more of the solutions may be missed. This is due to the absence of real space connections between separate homotopy path branches, thus preventing multiple solutions being reached from a single starting point. In this paper, a concept is presented that enables a tracking starting point and solution multiplicities in cases where the standard problem-independent homotopy method fails. The concept is based on homotopy parameter bounding and enables the connection of separate homotopy path branches. The concept performance is examined using distillation column examples. In the examined cases the concept is found to improve robustness by establishing a path in real space such that solutions are approached that would be unattainable using the standard homotopy method.

[1]  Neil L. Book,et al.  Unreachable roots for global homotopy continuation methods , 1991 .

[2]  J. W. Kovach Heterogenous azeotropic distillaion-homotopy-continuation methods , 1987 .

[3]  David Shan-Hill Wong,et al.  Experimental investigation of multiple steady states and parametric sensitivity in azeotropic distillation , 1997 .

[4]  Manfred Morari,et al.  Predicting Multiple Steady States in Equilibrium Reactive Distillation , 1998 .

[5]  P. Daoutidis,et al.  Modeling, Analysis and Control of Ethylene Glycol Reactive Distillation Column , 1999 .

[6]  Ranjan K. Malik,et al.  Solution multiplicity in multicomponent distillation a computational study , 2003 .

[7]  Jorge R. Paloschi,et al.  Bounded homotopies to solve systems of sparse algebraic nonlinear equations , 1997 .

[8]  M. Morari,et al.  Experimental study of multiple steady states in homogeneous azeotropic distillation , 1997 .

[9]  J. D. Seader,et al.  Computing multiple solutions to systems of interlinked separation columns , 1987 .

[10]  I.D.L. Bogle,et al.  Sparse Newton-like methods in equation oriented flowsheeting , 1988 .

[11]  M. Morari,et al.  Stabilization of an Unstable Distillation Column , 1998 .

[12]  Rüdiger Seydel,et al.  Role of continuation in engineering analysis , 1987 .

[13]  Juha Tanskanen,et al.  Modified Bounded Newton Homotopy Method in Solving Sidestream Column Configurations , 2007 .

[14]  Arthur W. Westerberg,et al.  Proceedings of the Second International Conference on Foundations of Computer-Aided Process Design , 1984 .

[15]  Neil L. Book,et al.  A robust path tracking algorithm for homotopy continuation , 1996 .

[16]  Achim Kienle,et al.  Multiple steady states in binary distillation : theoretical and experimental results , 1995 .

[17]  T. L. Wayburn,et al.  Multiple steady-state solutions for interlinked separation systems , 1986 .

[18]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .

[19]  Sigurd Skogestad,et al.  Instability of distillation columns , 1994 .

[20]  N. Kaistha,et al.  Steady State Analysis of Reactive Distillation Using Homotopy Continuation , 2005 .

[21]  Denish Shah,et al.  Multiple-Steady-States Identification in Homogeneous Azeotropic Distillation Using a Process Simulator , 2005 .

[22]  Saeed Khaleghi Rahimian,et al.  Global solution approaches in equilibrium and stability analysis using homotopy continuation in the complex domain , 2008, Comput. Chem. Eng..

[23]  Manfred Morari,et al.  Limit Cycles in Homogeneous Azeotropic Distillation , 1999 .

[24]  T. L. Wayburn,et al.  Homotopy continuation methods for computer-aided process design☆ , 1987 .

[25]  J. D. Seader,et al.  A generalized framework for computing bifurcation diagrams using process simulation programs , 2001 .

[26]  Manfred Morari,et al.  Predicting multiple steady states in distillation: Singularity analysis and reactive systems , 1997 .

[27]  Achim Kienle,et al.  Computing multiple steady states in homogeneous azeotropic distillation processes , 1994 .

[28]  S. Skogestad,et al.  Multiple steady states in ideal two‐product distillation , 1991 .

[29]  Philip Rabinowitz,et al.  Numerical methods for nonlinear algebraic equations , 1970 .

[30]  M. Morari,et al.  Multiple Steady States in Homogeneous Azeotropic Distillation , 1993, 1993 American Control Conference.

[31]  Jorge R. Paloschi,et al.  Using sparse bounded homotopies in the SPEEDUP simulation package , 1998 .

[32]  Robert S. Huss,et al.  Multiple steady states in reactive distillation: kinetic effects , 2002 .

[33]  R. Seydel From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis , 1988 .

[34]  Steven A. Johnson,et al.  Mapped continuation methods for computing all solutions to general systems of nonlinear equations , 1990 .

[35]  Manfred Morari,et al.  Multiple steady states in homogeneous separation sequences , 1996 .

[36]  Angelo Lucia,et al.  Multivariable terrain methods , 2003 .

[37]  Juha Tanskanen,et al.  A rigorous minimum energy calculation method for a fully thermally coupled distillation system , 2007 .

[38]  David D. Brengel,et al.  NONLINEAR ANALYSIS IN PROCESS DESIGN , 1991 .

[39]  Farhang Jalali,et al.  Process simulation using continuation method in complex domain , 1998 .

[40]  Wolfgang Marquardt,et al.  Experimental Verification of Multiple Steady States in Heterogeneous Azeotropic Distillation , 1997 .

[41]  Valeri N. Kiva,et al.  Multiple steady states of distillation and its realisation , 1997 .

[42]  Nikolaos Bekiaris,et al.  Multiple steady states in heterogeneous azeotropic distillation , 1995 .

[43]  Angelo Lucia,et al.  Global Terrain Methods , 2002, Encyclopedia of Optimization.

[44]  Sten Bay Jørgensen,et al.  Multiplicity in numerical solution of non-linear models: Separation processes , 1994 .

[45]  Manfred Morari,et al.  Multiple steady states in distillation : ∞/∞ predictions, extensions, and implications for design, synthesis, and simulation , 1996 .

[46]  Juha Tanskanen,et al.  Modified bounded homotopies to enable a narrow bounding zone , 2008 .

[47]  Manfred Morari,et al.  Design and control of homogeneous azeotropic distillation columns , 1994 .

[48]  John B. Gustafson,et al.  Evaluating all real roots of nonlinear equations using a global fixed‐point homotopy method , 1991 .

[49]  M. Kuno,et al.  Computing all real solutions to systems of nonlinear equations with a global fixed-point homotopy , 1988 .

[50]  Feng Yang,et al.  Solving distillation problems by terrain methods , 2004, Comput. Chem. Eng..

[51]  Manfred Morari,et al.  Multiple steady states in distillation: Effect of VL(L)E inaccuracies , 2000 .

[52]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[53]  En Sup Yoon,et al.  Simulation and analysis of complex distillation columns using continuation methods , 1993 .

[54]  A. Ciric,et al.  Steady State Multiplicities in an Ethylene Glycol Reactive Distillation Column , 1994 .

[55]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.