Modelling acute and lasting effects of tDCS on epileptic activity

[1]  Fabrice Wendling,et al.  Physiological effects of low-magnitude electric fields on brain activity: advances from in vitro, in vivo and in silico models. , 2018, Current opinion in biomedical engineering.

[2]  M. Nitsche,et al.  Physiology of Transcranial Direct Current Stimulation , 2018, The journal of ECT.

[3]  Sven Bestmann,et al.  Incomplete evidence that increasing current intensity of tDCS boosts outcomes , 2018, Brain Stimulation.

[4]  F. Wendling,et al.  On the origin of epileptic High Frequency Oscillations observed on clinical electrodes , 2018, Clinical Neurophysiology.

[5]  Leena E Williams,et al.  Higher-Order Thalamocortical Inputs Gate Synaptic Long-Term Potentiation via Disinhibition , 2018, Neuron.

[6]  G. Egan,et al.  The effects of transcranial direct current stimulation on short-interval intracortical inhibition and intracortical facilitation: a systematic review and meta-analysis , 2017, Reviews in the neurosciences.

[7]  Lucas C Parra,et al.  Direct current stimulation boosts synaptic gain and cooperativity in vitro , 2017, The Journal of physiology.

[8]  Tomoki Fukai,et al.  Redundancy in synaptic connections enables neurons to learn optimally , 2017, Proceedings of the National Academy of Sciences.

[9]  S. Rossi,et al.  Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS) , 2017, Clinical Neurophysiology.

[10]  Lucas C. Parra,et al.  Animal models of transcranial direct current stimulation: Methods and mechanisms , 2016, Clinical Neurophysiology.

[11]  F. Wendling,et al.  Dynamic changes of depolarizing GABA in a computational model of epileptogenic brain: Insight for Dravet syndrome , 2016, Experimental Neurology.

[12]  R. Tremblay,et al.  GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits , 2016, Neuron.

[13]  M. Seeck,et al.  Transcranial direct-current stimulation as treatment in epilepsy , 2016, Expert review of neurotherapeutics.

[14]  Brian Zingg,et al.  Thalamocortical Innervation Pattern in Mouse Auditory and Visual Cortex: Laminar and Cell-Type Specificity. , 2016, Cerebral cortex.

[15]  M. Avoli,et al.  Interneurons spark seizure-like activity in the entorhinal cortex , 2016, Neurobiology of Disease.

[16]  Alexander S. Ecker,et al.  Principles of connectivity among morphologically defined cell types in adult neocortex , 2015, Science.

[17]  Oscar C González,et al.  Modeling of Age-Dependent Epileptogenesis by Differential Homeostatic Synaptic Scaling , 2015, The Journal of Neuroscience.

[18]  Jochen F. Staiger,et al.  Characterizing VIP Neurons in the Barrel Cortex of VIPcre/tdTomato Mice Reveals Layer-Specific Differences , 2015, Cerebral cortex.

[19]  M. Nitsche,et al.  Reducing Prejudice Through Brain Stimulation , 2015, Brain Stimulation.

[20]  Guy Eyal,et al.  Dendritic and Axonal Architecture of Individual Pyramidal Neurons across Layers of Adult Human Neocortex , 2015, Cerebral cortex.

[21]  Felipe Fregni,et al.  Transcranial Direct Current Stimulation in Epilepsy , 2015, Brain Stimulation.

[22]  Martin Lévesque,et al.  The Morphological and Molecular Changes of Brain Cells Exposed to Direct Current Electric Field Stimulation , 2015, The international journal of neuropsychopharmacology.

[23]  G. Shepherd,et al.  The neocortical circuit: themes and variations , 2015, Nature Neuroscience.

[24]  J. Mattingley,et al.  Applications of transcranial direct current stimulation for understanding brain function , 2014, Trends in Neurosciences.

[25]  Florentin Wörgötter,et al.  The Formation of Multi-synaptic Connections by the Interaction of Synaptic and Structural Plasticity and Their Functional Consequences , 2014, BMC Neuroscience.

[26]  J. Engel,et al.  Past and Present Definitions of Epileptogenesis and Its Biomarkers , 2014, Neurotherapeutics.

[27]  R. Yuste,et al.  Axo-dendritic overlap and laminar projection can explain interneuron connectivity to pyramidal cells. , 2013, Cerebral cortex.

[28]  K. Harris,et al.  Cortical connectivity and sensory coding , 2013, Nature.

[29]  M. Wong,et al.  Dendritic spine pathology in epilepsy: Cause or consequence? , 2013, Neuroscience.

[30]  Roi Cohen Kadosh,et al.  The effect of transcranial direct current stimulation: a role for cortical excitation/inhibition balance? , 2013, Front. Hum. Neurosci..

[31]  Ethan R. Buch,et al.  Noninvasive brain stimulation: from physiology to network dynamics and back , 2013, Nature Neuroscience.

[32]  L. Parra,et al.  Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects , 2013, The Journal of physiology.

[33]  Mark F. Bear,et al.  The BCM theory of synapse modification at 30: interaction of theory with experiment , 2012, Nature Reviews Neuroscience.

[34]  K. Boyd,et al.  Decreased viability and absence‐like epilepsy in mice lacking or deficient in the GABAA receptor α1 subunit , 2012, Epilepsia.

[35]  J. Delgado-García,et al.  Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits , 2012, Proceedings of the National Academy of Sciences.

[36]  Á. Pascual-Leone,et al.  Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. , 2012, Journal of neurophysiology.

[37]  L. Parra,et al.  Low-Intensity Electrical Stimulation Affects Network Dynamics by Modulating Population Rate and Spike Timing , 2010, The Journal of Neuroscience.

[38]  Rosalind J. Sadleir,et al.  Transcranial direct current stimulation (tDCS) in a realistic head model , 2010, NeuroImage.

[39]  H. S. Meyer,et al.  Number and Laminar Distribution of Neurons in a Thalamocortical Projection Column of Rat Vibrissal Cortex , 2010, Cerebral cortex.

[40]  Heidi M. Schambra,et al.  Direct Current Stimulation Promotes BDNF-Dependent Synaptic Plasticity: Potential Implications for Motor Learning , 2010, Neuron.

[41]  J. C. Brumberg,et al.  Organization and morphology of thalamocortical neurons of mouse ventral lateral thalamus , 2010, Somatosensory & motor research.

[42]  Masato Okada,et al.  Influence of coherence between multiple cortical columns on alpha rhythm: A computational modeling study , 2009, Human brain mapping.

[43]  D. Reato,et al.  Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad , 2009, Brain Stimulation.

[44]  E. Kuramoto,et al.  Two types of thalamocortical projections from the motor thalamic nuclei of the rat: a single neuron-tracing study using viral vectors. , 2009, Cerebral cortex.

[45]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[46]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[47]  T. Branco,et al.  The probability of neurotransmitter release: variability and feedback control at single synapses , 2009, Nature Reviews Neuroscience.

[48]  P. Matthews,et al.  Polarity-Sensitive Modulation of Cortical Neurotransmitters by Transcranial Stimulation , 2009, The Journal of Neuroscience.

[49]  A. Draguhn,et al.  Rapid plasticity at inhibitory and excitatory synapses in the hippocampus induced by ictal epileptiform discharges , 2009, The European journal of neuroscience.

[50]  I. Timofeev,et al.  Synaptic Strength Modulation after Cortical Trauma: A Role in Epileptogenesis , 2008, The Journal of Neuroscience.

[51]  W. Abraham Metaplasticity: tuning synapses and networks for plasticity , 2008, Nature Reviews Neuroscience.

[52]  N. Spruston Pyramidal neurons: dendritic structure and synaptic integration , 2008, Nature Reviews Neuroscience.

[53]  Kimford J. Meador,et al.  The basic science of memory as it applies to epilepsy , 2007, Epilepsia.

[54]  A. Thomson,et al.  Functional Maps of Neocortical Local Circuitry , 2007, Front. Neurosci..

[55]  Y. Okada,et al.  Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals , 2006, The Journal of physiology.

[56]  M. Hallett,et al.  Modeling the current distribution during transcranial direct current stimulation , 2006, Clinical Neurophysiology.

[57]  D. Attwell,et al.  Neuroenergetics and the kinetic design of excitatory synapses , 2005, Nature Reviews Neuroscience.

[58]  João Pereira Leite,et al.  Plasticity, Synaptic Strength, and Epilepsy: What Can We Learn from Ultrastructural Data? , 2005, Epilepsia.

[59]  W. Hauser,et al.  Comment on Epileptic Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) , 2005, Epilepsia.

[60]  C. Elger,et al.  Epileptic Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) , 2005, Epilepsia.

[61]  M. Farrant,et al.  Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors , 2005, Nature Reviews Neuroscience.

[62]  H. Markram,et al.  Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat , 2004, The Journal of physiology.

[63]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[64]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.

[65]  J. Jefferys,et al.  Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro , 2004, The Journal of physiology.

[66]  M. Nitsche,et al.  Pharmacological Modulation of Cortical Excitability Shifts Induced by Transcranial Direct Current Stimulation in Humans , 2003, The Journal of physiology.

[67]  M Bikson,et al.  Effects of weak electric fields on the activity of neurons and neuronal networks. , 2003, Radiation protection dosimetry.

[68]  M. Nitsche,et al.  Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. , 2002, Brain : a journal of neurology.

[69]  J. Bellanger,et al.  Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition , 2002, The European journal of neuroscience.

[70]  M. Nitsche,et al.  Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans , 2001, Neurology.

[71]  D M Durand,et al.  Effects of applied electric fields on low-calcium epileptiform activity in the CA1 region of rat hippocampal slices. , 2000, Journal of neurophysiology.

[72]  D. Durand,et al.  Modulation of burst frequency, duration, and amplitude in the zero-Ca(2+) model of epileptiform activity. , 1999, Journal of neurophysiology.

[73]  B. Connors,et al.  Efficacy of Thalamocortical and Intracortical Synaptic Connections Quanta, Innervation, and Reliability , 1999, Neuron.

[74]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[75]  R. Traub,et al.  A mechanism for generation of long-range synchronous fast oscillations in the cortex , 1996, Nature.

[76]  J. Budd,et al.  A numerical analysis of the geniculocortical input to striate cortex in the monkey. , 1994, Cerebral cortex.

[77]  T. Wiesel,et al.  Patterns of synaptic input to layer 4 of cat striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[78]  C. McCaig,et al.  Motoneuron death and motor unit size during embryonic development of the rat , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  M. Colonnier,et al.  A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys , 1982, The Journal of comparative neurology.

[80]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[81]  F. H. Lopes da Silva,et al.  Relative contributions of intracortical and thalamo-cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis. , 1980, Electroencephalography and clinical neurophysiology.

[82]  Lara Jehi,et al.  The Epileptogenic Zone: Concept and Definition , 2018, Epilepsy currents.

[83]  J. Swann,et al.  How is homeostatic plasticity important in epilepsy? , 2014, Advances in experimental medicine and biology.

[84]  G. Fishell,et al.  Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons , 2011, Developmental neurobiology.

[85]  Volker Scheuss,et al.  NMDA Receptor Function and Physiological Modulation , 2009 .

[86]  A. Thomson,et al.  Interlaminar connections in the neocortex. , 2003, Cerebral cortex.

[87]  David Fitzpatrick,et al.  An Overview of Cortical Structure , 2001 .

[88]  Y. Ben-Ari,et al.  Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy , 2001, Nature Neuroscience.

[89]  Prof. Dr. Dr. Valentino Braitenberg,et al.  Cortex: Statistics and Geometry of Neuronal Connectivity , 1998, Springer Berlin Heidelberg.