Numerical simulation of the ductile failure of mechanically and moisture loaded wooden structures

Wooden structures are always exposed to climate changes. Since all its mechanical properties are moisture-dependent, the influence of moisture content on the mechanical behavior has to be considered for a realistic simulation. A hygro-mechanically coupled macroscopic material model for use within the framework of the FEM is introduced. Thereby, moisture diffusion, hygro-expansion and moisture-dependent linear elastic behavior and ductile failure are covered. The tangent matrix required for the Newton procedure is derived completely. The model is applied to the simulation of experiments for the determination of the swelling pressure of spruce.

[1]  R. Keylwerth Untersuchungen über freie und behinderte Quellung von Holz—Erste Mitteilung: Freie Quellung , 1962, Holz als Roh- und Werkstoff.

[2]  Rudolf Keylwerth Untersuchungen über freie und behinderte Quellung—Zweite Mitteilung: Behinderte Quellung , 2007, Holz als Roh- und Werkstoff.

[3]  W. Simpson Moisture changes induces in Red Oak by transverse stress. , 2007 .

[4]  R. Popper,et al.  Untersuchungen zur Gleichgewichtsfeuchte und Quellung von Massivholzplatten , 2004, Holz als Roh- und Werkstoff.

[5]  H. Neuhaus Über das elastische Verhalten von Fichtenholz in Abhängigkeit von der Holzfeuchtigkeit , 2007, Holz als Roh- und Werkstoff.

[6]  R. Keylwerth Praktische Untersuchungen zum Holzfeuchtigkeits-Gleichgewicht , 1969, Holz als Roh- und Werkstoff.

[7]  Sigurdur Ormarsson,et al.  Numerical Analysis of Moisture-Related Distortion in Sawn Timber , 1999 .

[8]  C. Skaar Wood-Water Relations , 1988, Springer Series in Wood Science.

[9]  S. Avramidis,et al.  An investigation of the external and internal resistance to moisture diffusion in wood , 1987, Wood Science and Technology.

[10]  H. Frandsen,et al.  A revised multi-Fickian moisture transport model to describe non-Fickian effects in wood , 2007 .

[11]  Christian Jenkel,et al.  Computational Models for Wooden Structures , 2010 .

[12]  S. Avramidis,et al.  Evaluation of “three-variable” models for the prediction of equilibrium moisture content in wood , 1989, Wood Science and Technology.

[13]  L. Damkilde,et al.  A model for non-fickian moisture transfer in wood , 2004 .

[14]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[15]  Jörg Schmidt,et al.  Zur dreidimensionalen Materialmodellierung von Fichtenholz mittels eines Mehrflächen-Plastizitätsmodells , 2006, Holz als Roh- und Werkstoff.

[16]  Michael Kaliske,et al.  Three-dimensional numerical analyses of load-bearing behavior and failure of multiple double-shear dowel-type connections in timber engineering , 2010 .

[17]  R. Kingston,et al.  Review of the sufficiency of research on the swelling pressure of wood , 1972, Wood Science and Technology.

[18]  Karin Hofstetter,et al.  Prediction of transport properties of wood below the fiber saturation point – A multiscale homogenization approach and its experimental validation. Part II: Steady state moisture diffusion coefficient , 2011 .

[19]  F. Kollmann Zur Theorie der Sorption , 1963 .

[20]  Thomas Gereke,et al.  Moisture-induced stresses in cross-laminated wood panels , 2009 .

[21]  C. Gerhards Effect of Moisture Content and Temperature on the Mechanical Properties of Wood: An Analysis of Immediate Effects , 2007 .