An extended recursive least-squares algorithm

In this correspondence, we establish a matrix pseudo-inversion lemma, and use it to develop an extended recursive least-squares (ERLS) algorithm. The ERLS algorithm is available for solving the over-determined normal equations in the instrumental variable approaches. The performance of the new algorithm is evaluated via computer simulations.

[1]  Björn E. Ottersten,et al.  Array processing in correlated noise fields based on instrumental variables and subspace fitting , 1995, IEEE Trans. Signal Process..

[2]  Hiroshi Takeda,et al.  Order-recursive methods for instrumental variable estimates and instrumental variable inverses , 1987 .

[3]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[4]  Nicholas Kalouptsidis,et al.  Adaptive system identification and signal processing algorithms , 1993 .

[5]  Hussein Baher,et al.  Analog & digital signal processing , 1990 .

[6]  Björn E. Ottersten,et al.  Instrumental variable approach to array processing in spatially correlated noise fields , 1994, IEEE Trans. Signal Process..

[7]  Odile Macchi,et al.  Adaptive recovery of a chirped sinusoid in noise. I. Performance of the RLS algorithm , 1991, IEEE Trans. Signal Process..

[8]  B. Friedlander The overdetermined recursive instrumental variable method , 1983 .

[9]  M. Swamy,et al.  A constrained anti-Hebbian learning algorithm for total least-squares estimation with applications to adaptive FIR and IIR filtering , 1994 .

[10]  B. Friedlander,et al.  The square-root overdetermined recursive instrumental variable algorithm , 1989 .

[11]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[12]  T. Söderström,et al.  Instrumental variable methods for system identification , 1983 .

[13]  J. Cadzow,et al.  High performance spectral estimation--A new ARMA method , 1980 .

[14]  Benjamin Friedlander,et al.  Instrumental variable methods for ARMA spectral estimation , 1982, ICASSP.

[15]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[16]  A. A. Beex,et al.  Instrumental variable adaptive array processing , 1988 .