A Joint Modeling Approach for Longitudinal Data with Informative Observation Times and a Terminal Event

In this article, we propose a new joint modeling approach for the analysis of longitudinal data with informative observation times and a dependent terminal event. We specify a semiparametric mixed effects model for the longitudinal process, a proportional rate frailty model for the observation process, and a proportional hazards frailty model for the terminal event. The association among the three related processes is modeled via two latent variables. Estimating equation approaches are developed for parameter estimation, and the asymptotic properties of the proposed estimators are established. The finite sample performance of the proposed estimators is examined through simulation studies, and an application to a medical cost study of chronic heart failure patients is illustrated.

[1]  Xingqiu Zhao,et al.  Joint analysis of longitudinal data with dependent observation times , 2012 .

[2]  Lei Liu,et al.  Analysis of Longitudinal Data in the Presence of Informative Observational Times and a Dependent Terminal Event, with Application to Medical Cost Data , 2008, Biometrics.

[3]  Zhiliang Ying,et al.  Semiparametric regression for the mean and rate functions of recurrent events , 2000 .

[4]  Xin-Yuan Song,et al.  Regression Analysis of Longitudinal Data with Time‐Dependent Covariates and Informative Observation Times , 2012 .

[5]  Lei Liu,et al.  A shared random effects model for censored medical costs and mortality , 2007, Statistics in medicine.

[6]  D. Pollard Empirical Processes: Theory and Applications , 1990 .

[7]  Douglas E Schaubel,et al.  Semiparametric Analysis of Correlated Recurrent and Terminal Events , 2007, Biometrics.

[8]  Douglas E Schaubel,et al.  An Estimating Function Approach to the Analysis of Recurrent and Terminal Events , 2013, Biometrics.

[9]  Zhiliang Ying,et al.  Semiparametric analysis of the additive risk model , 1994 .

[10]  Yu Liang,et al.  Joint Modeling and Analysis of Longitudinal Data with Informative Observation Times , 2009, Biometrics.

[11]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[12]  Daniel O. Scharfstein,et al.  Analysis of longitudinal data with irregular, outcome‐dependent follow‐up , 2004 .

[13]  Jie Zhou,et al.  Joint Analysis of Longitudinal Data With Informative Observation Times and a Dependent Terminal Event , 2012 .

[14]  Xingqiu Zhao,et al.  Semiparametric Regression Analysis of Longitudinal Data With Informative Observation Times , 2005 .

[15]  Jianguo Sun,et al.  Regression Analysis of Longitudinal Data in the Presence of Informative Observation and Censoring Times , 2007 .

[16]  Jie Zhou,et al.  A NEW INFERENCE APPROACH FOR JOINT MODELS OF LONGITUDINAL DATA WITH INFORMATIVE OBSERVATION AND CENSORING TIMES , 2013 .

[17]  Zhiliang Ying,et al.  Semiparametric and Nonparametric Regression Analysis of Longitudinal Data , 2001 .

[18]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data: Kalbfleisch/The Statistical , 2002 .

[19]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[20]  Wenbin Lu,et al.  Time‐Varying Latent Effect Model for Longitudinal Data with Informative Observation Times , 2012, Biometrics.

[21]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[22]  Joseph G Ibrahim,et al.  Gamma frailty transformation models for multivariate survival times. , 2009, Biometrika.

[23]  Duchwan Ryu,et al.  Longitudinal Studies With Outcome-Dependent Follow-up , 2007, Journal of the American Statistical Association.