Foxg1 coordinates the switch from nonradially to radially migrating glutamatergic subtypes in the neocortex through spatiotemporal repression.

[1]  G. Miyoshi,et al.  Dynamic FoxG1 Expression Coordinates the Integration of Multipolar Pyramidal Neuron Precursors into the Cortical Plate , 2012, Neuron.

[2]  A. Hoerder-Suabedissen,et al.  Early B-cell factors 2 and 3 (EBF2/3) regulate early migration of Cajal–Retzius cells from the cortical hem , 2012, Developmental biology.

[3]  Jing Zhao,et al.  Foxg1 Has an Essential Role in Postnatal Development of the Dentate Gyrus , 2012, The Journal of Neuroscience.

[4]  Peter Kirwan,et al.  Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses , 2012, Nature Neuroscience.

[5]  L. Puelles Pallio-Pallial Tangential Migrations and Growth Signaling: New Scenario for Cortical Evolution? , 2011, Brain, Behavior and Evolution.

[6]  M. Johnston,et al.  Neurodevelopmental disorders: Clinical criteria for Rett syndrome , 2011, Nature Reviews Neurology.

[7]  S. Gimelli,et al.  West syndrome associated with 14q12 duplications harboring FOXG1 , 2011, Neurology.

[8]  Mingfeng Li,et al.  TBR1 directly represses Fezf2 to control the laminar origin and development of the corticospinal tract , 2011, Proceedings of the National Academy of Sciences.

[9]  J. D. Macklis,et al.  Development, specification, and diversity of callosal projection neurons , 2011, Trends in Neurosciences.

[10]  J. Rubenstein,et al.  Tbr1 and Fezf2 Regulate Alternate Corticofugal Neuronal Identities during Neocortical Development , 2011, The Journal of Neuroscience.

[11]  G. Meyer Building a human cortex: the evolutionary differentiation of Cajal‐Retzius cells and the cortical hem , 2010, Journal of anatomy.

[12]  A. Pierani,et al.  Patterning the cerebral cortex: traveling with morphogens. , 2010, Current opinion in genetics & development.

[13]  A. Pierani,et al.  A Novel Role for Dbx1-Derived Cajal-Retzius Cells in Early Regionalization of the Cerebral Cortical Neuroepithelium , 2010, PLoS biology.

[14]  N. Papalopulu,et al.  FoxG1 and TLE2 act cooperatively to regulate ventral telencephalon formation , 2010, Development.

[15]  D. Price,et al.  The transcription factor Foxg1 regulates the competence of telencephalic cells to adopt subpallial fates in mice , 2010, Development.

[16]  S. Arber,et al.  Role of Fgf8 signalling in the specification of rostral Cajal-Retzius cells , 2010, Development.

[17]  Klaus-Armin Nave,et al.  Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors , 2009, Nature Neuroscience.

[18]  G. Meyer,et al.  DeltaNp73 regulates neuronal survival in vivo , 2009, Proceedings of the National Academy of Sciences.

[19]  D. O'Leary,et al.  Lhx2 specifies regional fate in Emx1 lineage of telencephalic progenitors generating cerebral cortex , 2009, Nature Neuroscience.

[20]  L. Medina,et al.  Development and evolution of the pallium. , 2009, Seminars in cell & developmental biology.

[21]  M. Cohn,et al.  Sonic hedgehog controls growth of external genitalia by regulating cell cycle kinetics , 2009, Nature communications.

[22]  N. Papalopulu,et al.  Integration of telencephalic Wnt and hedgehog signaling center activities by Foxg1. , 2009, Developmental cell.

[23]  Yoshiki Sasai,et al.  Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. , 2008, Cell stem cell.

[24]  A. Gould,et al.  Temporal control of neuronal diversity: common regulatory principles in insects and vertebrates? , 2008, Development.

[25]  V. Lefebvre,et al.  SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons , 2008, Proceedings of the National Academy of Sciences.

[26]  Pierre Vanderhaeghen,et al.  An intrinsic mechanism of corticogenesis from embryonic stem cells , 2008, Nature.

[27]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[28]  S. Nelson,et al.  The Fezf2–Ctip2 genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral cortex , 2008, Proceedings of the National Academy of Sciences.

[29]  T. Ohtsuka,et al.  Hes genes and neurogenin regulate non-neural versus neural fate specification in the dorsal telencephalic midline , 2008, Development.

[30]  K. Mikoshiba,et al.  Zic Deficiency in the Cortical Marginal Zone and Meninges Results in Cortical Lamination Defects Resembling Those in Type II Lissencephaly , 2008, The Journal of Neuroscience.

[31]  S. Mcconnell,et al.  Satb2 Regulates Callosal Projection Neuron Identity in the Developing Cerebral Cortex , 2008, Neuron.

[32]  S. Mcconnell,et al.  The determination of projection neuron identity in the developing cerebral cortex , 2008, Current Opinion in Neurobiology.

[33]  Karla E. Hirokawa,et al.  Lhx2 Selector Activity Specifies Cortical Identity and Suppresses Hippocampal Organizer Fate , 2008, Science.

[34]  N. Osumi,et al.  Patterns of Neurogenesis and Amplitude of Reelin Expression Are Essential for Making a Mammalian-Type Cortex , 2008, PloS one.

[35]  G. Fishell,et al.  The Role of Foxg1 and Dorsal Midline Signaling in the Generation of Cajal-Retzius Subtypes , 2007, The Journal of Neuroscience.

[36]  N. Illing,et al.  The neural progenitor-specifying activity of FoxG1 is antagonistically regulated by CKI and FGF , 2007, Nature Cell Biology.

[37]  D. Haussler,et al.  An RNA gene expressed during cortical development evolved rapidly in humans , 2006, Nature.

[38]  E. Grove,et al.  Massive loss of Cajal-Retzius cells does not disrupt neocortical layer order , 2006, Development.

[39]  S. Mcconnell,et al.  Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  P. Arlotta,et al.  Fezl Is Required for the Birth and Specification of Corticospinal Motor Neurons , 2005, Neuron.

[41]  Sébastien Vigneau,et al.  Multiple origins of Cajal-Retzius cells at the borders of the developing pallium , 2005, Nature Neuroscience.

[42]  N. Barkai,et al.  The ups and downs of biological timers , 2005, Theoretical Biology and Medical Modelling.

[43]  S. Aizawa,et al.  Emx2 and Pax6 Function in Cooperation with Otx2 and Otx1 to Develop Caudal Forebrain Primordium That Includes Future Archipallium , 2005, The Journal of Neuroscience.

[44]  Luca Muzio,et al.  Foxg1 Confines Cajal-Retzius Neuronogenesis and Hippocampal Morphogenesis to the Dorsomedial Pallium , 2005, The Journal of Neuroscience.

[45]  Paola Arlotta,et al.  Neuronal Subtype-Specific Genes that Control Corticospinal Motor Neuron Development In Vivo , 2005, Neuron.

[46]  S. Nakanishi,et al.  Distinct ontogenic and regional expressions of newly identified Cajal-Retzius cell-specific genes during neocorticogenesis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[47]  S. Anderson,et al.  Integration of Smad and Forkhead Pathways in the Control of Neuroepithelial and Glioblastoma Cell Proliferation , 2004, Cell.

[48]  Gord Fishell,et al.  Foxg1 Suppresses Early Cortical Cell Fate , 2004, Science.

[49]  P. Vogt,et al.  Excess FoxG1 causes overgrowth of the neural tube. , 2003, Journal of neurobiology.

[50]  C. Englund,et al.  Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin. , 2003, Brain research. Developmental brain research.

[51]  J. Olavarria,et al.  Beyond Laminar Fate: Toward a Molecular Classification of Cortical Projection/Pyramidal Neurons , 2003, Developmental Neuroscience.

[52]  Stephen W. Wilson,et al.  Conserved and divergent patterns of Reelin expression in the zebrafish central nervous system , 2002, The Journal of comparative neurology.

[53]  E. Lai,et al.  Brain Factor-1 Controls the Proliferation and Differentiation of Neocortical Progenitor Cells through Independent Mechanisms , 2002, The Journal of Neuroscience.

[54]  M. Rosenfeld,et al.  Transcriptional Regulation of Cortical Neuron Migration by POU Domain Factors , 2002, Science.

[55]  Stefano Stifani,et al.  The Winged-Helix Protein Brain Factor 1 Interacts with Groucho and Hes Proteins To Repress Transcription , 2001, Molecular and Cellular Biology.

[56]  J. Massagué,et al.  BF-1 Interferes with Transforming Growth Factor β Signaling by Associating with Smad Partners , 2000, Molecular and Cellular Biology.

[57]  N. Papalopulu,et al.  Distinct effects of XBF-1 in regulating the cell cycle inhibitor p27(XIC1) and imparting a neural fate. , 2000, Development.

[58]  J. Rubenstein,et al.  Inductive interactions direct early regionalization of the mouse forebrain. , 1997, Development.

[59]  S. Xuan,et al.  Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres , 1995, Neuron.

[60]  E. Lai,et al.  Telencephalon-restricted expression of BF-1, a new member of the HNF-3/fork head gene family, in the developing rat brain , 1992, Neuron.

[61]  Yamamura Ken-ichi,et al.  Efficient selection for high-expression transfectants with a novel eukaryotic vector , 1991 .

[62]  H. Niwa,et al.  Efficient selection for high-expression transfectants with a novel eukaryotic vector. , 1991, Gene.

[63]  R. Sidman,et al.  Autoradiographic Study of Cell Migration during Histogenesis of Cerebral Cortex in the Mouse , 1961, Nature.