Protracted Thermal Evolution of a Migmatitic Terrane as Revealed by Multiple Geochronometers From the Retro‐Arc of the Early Paleozoic Famatinian Orogen in NW Argentina

U‐Pb dates of zircon, monazite, and titanite combined with trace element composition, allows characterization of the thermal evolution of the migmatitic Agua del Sapo complex. This complex comprises Al‐rich and Ca‐rich metasedimentary rocks with a detrital zircon maximum depositional age of 550 Ma. The rocks record two consecutive early Paleozoic orogenies. During subduction associated with the 550–510 Ma Pampean orogeny, the complex was in the fore‐arc region and was intruded by 550–520 Ma granites indicative of anomalous heating possibly related to ridge subduction. During the subsequent 500–440 Ma Famatinian orogeny, the arc migrated trenchwards and the region became part of a retro‐arc that underwent melting at upper‐amphibolite facies. This event was recorded differently by each of the accessory phases. Detrital zircon cores were overgrown by rare Famatinian rims that range from 500 to 420 Ma, while monazite records only Famatinian dates with a growth peak at ∼457 Ma that extends to 410 Ma, possibly due to coupled dissolution‐precipitation. Published titanite dates define a 120 Myr thermal history, starting at ∼500 Ma with temperatures of ∼750°C ± 25°C, ending at 380 Ma and ∼700°C ± 25°C. Cooling was accompanied by a decrease in titanite light rare earth element contents in response to increased abundance of allanite/epidote. Thus, the complementary time‐compositional record of the accessory phases reveals continued high heat flow, associated with deformation, to 380 Ma. This prolonged event blurs the boundary between the Famatinian and the subsequent Achalian/Chanic orogenies and extends the Silurian Rinconada tectonic phase of the Famatinian orogeny to the east into the Eastern Sierras Pampeanas.

[1]  F. Gervais,et al.  Deformation induced decoupling between U-Pb and trace elements in titanite revealed through petrochronology and study of localized deformation , 2022, Geoscience Frontiers.

[2]  R. Pankhurst,et al.  Late Famatinian (440–410 Ma) overprint of Grenvillian metamorphism in Grt‐St schists from the Sierra de Maz (Argentina): Phase equilibrium modelling, geochronology, and tectonic significance , 2022, Journal of Metamorphic Geology.

[3]  G. Gehrels,et al.  Linking titanite U–Pb dates to coupled deformation and dissolution–reprecipitation , 2022, Contributions to Mineralogy and Petrology.

[4]  Peter A. Cawood,et al.  Hf isotopic ratios in zircon reveal processes of anatexis and pluton construction , 2021, Earth and Planetary Science Letters.

[5]  R. Pankhurst,et al.  The Rinconada phase: A regional tectono-metamorphic event of Silurian age in the pre-Andean basement of Argentina , 2021 .

[6]  J. Vervoort,et al.  Supplemental Material: Metamorphism of the Sierra de Maz and implications for the tectonic evolution of the MARA terrane , 2021, Geosphere.

[7]  S. Reddy,et al.  Deformation-enhanced recrystallization of titanite drives decoupling between U-Pb and trace elements , 2021 .

[8]  L. Pinotti,et al.  Constraining the timing and evolution of a long-lived tectonic boundary: an example from the Early Paleozoic, Argentina , 2021 .

[9]  P. Alasino,et al.  Extending the Pampean orogen in western Argentina: New evidence of Cambrian magmatism and metamorphism within the Ordovician Famatinian belt revealed by new SHRIMP U–Pb ages , 2021 .

[10]  R. Pankhurst,et al.  The Faja Eruptiva of the Eastern Puna and the Sierra de Calalaste, NW Argentina: U–Pb zircon chronology of the early Famatinan orogeny , 2021, Journal of Iberian Geology.

[11]  C. Chelle-Michou,et al.  Quantifying frozen melt in crustal rocks: A new melt-o-meter based on zircon rim volumes , 2020, Chemical Geology.

[12]  R. Weinberg,et al.  From Crustal Thickening to Orogen‐Parallel Escape: The 120‐Myr‐Long HT‐LP Evolution Recorded by Titanite in the Paleozoic Famatinian Backarc, NW Argentina , 2020, Tectonics.

[13]  Paula Armas,et al.  The geodynamic history of the Famatinian arc, Argentina: A record of exposed geology over the type section (latitudes 27°- 33° south) , 2020, Journal of South American Earth Sciences.

[14]  P. Závada,et al.  Decoupled U-Pb date and chemical zonation of monazite in migmatites: The case for disturbance of isotopic systematics by coupled dissolution-reprecipitation , 2020 .

[15]  T. Zack,et al.  Assessment of Five Monazite Reference Materials for U-Th/Pb Dating Using Laser-Ablation ICP-MS , 2019, Geosciences.

[16]  A. Vauchez,et al.  Slow cooling and crystallization of the roots of the Neoproterozoic Araçuaí hot orogen (SE Brazil): Implications for rheology, strain distribution, and deformation analysis , 2019, Tectonophysics.

[17]  F. Jourdan,et al.  Prolonged Movement on a > 10‐km‐Wide Thrust During Early Paleozoic Orogens in the Gondwana Margin of NW Argentina , 2019, Tectonics.

[18]  F. Finger,et al.  Application of Ti-in-zircon thermometry to granite studies: problems and possible solutions , 2019, Contributions to Mineralogy and Petrology.

[19]  C. Kirkland,et al.  Trace elements in titanite: A potential tool to constrain polygenetic growth processes and timing , 2019, Chemical Geology.

[20]  S. Reddy,et al.  Nanoscale resetting of the Th/Pb system in an isotopically-closed monazite grain: A combined atom probe and transmission electron microscopy study , 2019, Geoscience Frontiers.

[21]  R. Weinberg,et al.  Early Paleozoic accretionary orogenies in NW Argentina: Growth of West Gondwana , 2018, Earth-Science Reviews.

[22]  M. Basei,et al.  A review of the Famatinian Ordovician magmatism in southern South America: evidence of lithosphere reworking and continental subduction in the early proto-Andean margin of Gondwana , 2018, Earth-Science Reviews.

[23]  A. Vauchez,et al.  How long can the middle crust remain partially molten during orogeny? , 2018, Geology.

[24]  C. Kirkland,et al.  Th/U ratios in metamorphic zircon , 2018 .

[25]  P. Vermeesch IsoplotR: A free and open toolbox for geochronology , 2018, Geoscience Frontiers.

[26]  R. Weinberg,et al.  How Melt Segregation Affects Granite Chemistry: Migmatites from the Sierra de Quilmes, NW Argentina , 2017 .

[27]  N. Botelho,et al.  Low‐P melting of metapelitic rocks and the role of H2O: Insights from phase equilibria modelling , 2017 .

[28]  R. Weinberg,et al.  A major mid-crustal decollement of the Paleozoic convergent margin of western Gondwana: The Guacha Corral shear zone, Argentina , 2017 .

[29]  C. Kirkland,et al.  Apatite and titanite from the Karrat Group, Greenland; implications for charting the thermal evolution of crust from the U-Pb geochronology of common Pb bearing phases , 2017 .

[30]  D. Harlov,et al.  Ilmenite breakdown and rutile-titanite stability in metagranitoids: Natural observations and experimental results , 2017 .

[31]  H. Fossen,et al.  Shear zones – A review , 2017 .

[32]  R. Weinberg,et al.  Tectono-metamorphic evolution of a convergent back-arc: The Famatinian orogen, Sierra de Quilmes, Sierras Pampeanas, NW Argentina , 2017 .

[33]  G. Seward,et al.  Controls on Trace Element Uptake in Metamorphic Titanite: Implications for Petrochronology , 2017 .

[34]  J. Darling,et al.  Dating shear zones with plastically deformed titanite; new insights into the orogenic evolution of the Sudbury impact structure (Ontario, Canada) , 2017 .

[35]  J. Crowley,et al.  Ultrafast magmatic buildup and diversification to produce continental crust during subduction , 2017, Geology.

[36]  Richard R. Taylor,et al.  Accessories after the facts: Constraining the timing, duration and conditions of high-temperature metamorphic processes , 2016 .

[37]  A. Gerdes,et al.  The ages and tectonic setting of the Faja Eruptiva de la Puna Oriental, Ordovician, NW Argentina , 2016 .

[38]  J. Schwartz,et al.  Thermochronology of extensional orogenic collapse in the deep crust of Zealandia , 2016 .

[39]  J. Berndt,et al.  Provenance from zircon U–Pb age distributions in crustally contaminated granitoids , 2016 .

[40]  C. Kirkland,et al.  Discriminating prolonged, episodic or disturbed monazite age spectra: An example from the Kalak Nappe Complex, Arctic Norway , 2016 .

[41]  R. Pankhurst,et al.  Identifying Laurentian and SW Gondwana sources in the Neoproterozoic to Early Paleozoic metasedimentary rocks of the Sierras Pampeanas: Paleogeographic and tectonic implications , 2016 .

[42]  M. Basei,et al.  Early Cambrian U-Pb zircon age and Hf-isotope data from the Guasayán pluton, Sierras Pampeanas, Argentina: implications for the northwestern boundary of the Pampean arc , 2016 .

[43]  R. Romer,et al.  LASS U–Th–Pb monazite and rutile geochronology of felsic high-pressure granulites (Rhodope, N Greece): Effects of fluid, deformation and metamorphic reactions in local subsystems , 2015 .

[44]  F. Corfu,et al.  Behaviour of geochronometers and timing of metamorphic reactions during deformation at lower crustal conditions: phase equilibrium modelling and U–Pb dating of zircon, monazite, rutile and titanite from the Kalak Nappe Complex, northern Norway , 2015 .

[45]  C. Clark,et al.  Prograde and retrograde growth of monazite in migmatites: An example from the Nagercoil Block, southern India , 2015 .

[46]  L. Ratschbacher,et al.  Titanite petrochronology of the Pamir gneiss domes: Implications for middle to deep crust exhumation and titanite closure to Pb and Zr diffusion , 2015 .

[47]  R. Weinberg,et al.  One kilometre-thick ultramylonite, Sierra de Quilmes, Sierras Pampeanas, NW Argentina , 2015 .

[48]  Paula Armas,et al.  A Middle Paleozoic shear zone in the Sierra de Valle Fértil, Argentina: Records of a continent-arc collision in the Famatinian margin of Gondwana , 2014 .

[49]  H. O’Neill The Smoothness and Shapes of Chondrite-normalized Rare Earth Element Patterns in Basalts , 2014 .

[50]  C. Clark,et al.  Post-peak, fluid-mediated modification of granulite facies zircon and monazite in the Trivandrum Block, southern India , 2014, Contributions to Mineralogy and Petrology.

[51]  C. Fanning,et al.  Switch from thrusting to normal shearing in the Zanskar shear zone, NW Himalaya: Implications for channel flow , 2014 .

[52]  G. Gehrels Detrital Zircon U-Pb Geochronology Applied to Tectonics , 2014 .

[53]  M. Brown,et al.  Behaviour of zircon and monazite during crustal melting , 2014, Journal of the Geological Society.

[54]  P. Renne,et al.  Multiple migmatite events and cooling from granulite facies metamorphism within the Famatina arc margin of northwest Argentina , 2014 .

[55]  M. Pimentel,et al.  Petrogenesis of migmatites and leucogranites from Sierra de Molinos, Salta, Northwest Argentina: A petrologic and geochemical study , 2013 .

[56]  F. Bea The sources of energy for crustal melting and the geochemistry of heat-producing elements , 2012 .

[57]  M. Brown,et al.  Granite: From genesis to emplacement , 2012 .

[58]  Yong‐Fei Zheng,et al.  Geochemical and U–Pb age constraints on the occurrence of polygenetic titanites in UHP metagranite in the Dabie orogen , 2012 .

[59]  J. Darling,et al.  Redistribution of REE, Y, Th, and U at high pressure: Allanite-forming reactions in impure meta-quartzites (Sesia Zone, Western Italian Alps) , 2012 .

[60]  C. V. Staal,et al.  The age and tectonic setting of the Puncoviscana Formation in northwestern Argentina: An accretionary complex related to Early Cambrian closure of the Puncoviscana Ocean and accretion of the Arequipa-Antofalla block , 2011 .

[61]  J. Hellstrom,et al.  Iolite: Freeware for the visualisation and processing of mass spectrometric data , 2011 .

[62]  D. Harlov,et al.  Resetting monazite ages during fluid-related alteration , 2011 .

[63]  H. Miller,et al.  Evolution of exhumation and erosion in western West Gondwanaland as recorded by detrital zircons of late Neoproterozoic and Cambrian sedimentary rocks of NW and Central Argentina , 2011 .

[64]  G. Franz,et al.  The Early Palaeozoic high-grade metamorphism at the active continental margin of West Gondwana in the Andes (NW Argentina/N Chile) , 2011 .

[65]  M. Caddick,et al.  Preservation of Garnet Growth Zoning and the Duration of Prograde Metamorphism , 2010 .

[66]  V. Ramos,et al.  Pampia: A large cratonic block missing in the Rodinia supercontinent , 2010 .

[67]  G. Gehrels,et al.  Timing constraints on building an intermediate plutonic arc crustal section: U‐ Pb zircon geochronology of the Sierra Valle Fértil–La Huerta, Famatinian arc, Argentina , 2010 .

[68]  D. Harlov,et al.  Letter. Partial high-grade alteration of monazite using alkali-bearing fluids: Experiment and nature , 2010 .

[69]  I. Çemen,et al.  Geochemistry, geochronology, and cathodoluminescence imagery of the Salihli and Turgutlu granites (central Menderes Massif, Western Turkey): Implications for Aegean tectonics , 2010 .

[70]  D. Harlov,et al.  Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition , 2010 .

[71]  J. Hellstrom,et al.  Improved laser ablation U‐Pb zircon geochronology through robust downhole fractionation correction , 2010 .

[72]  S. Büttner The Ordovician Sierras Pampeanas-Puna basin connection: Basement thinning and basin formation in the Proto-Andean back-arc , 2009 .

[73]  D. Cherniak,et al.  Th diffusion in monazite , 2008 .

[74]  B. Wade,et al.  Temporal constraints on the timing of high-grade metamorphism in the northern Gawler Craton: implications for assembly of the Australian Proterozoic , 2008 .

[75]  S. Chakraborty,et al.  Styles of post-subduction collisional orogeny: Influence of convergence velocity, crustal rheology and radiogenic heat production , 2008 .

[76]  E. Watson,et al.  A thermobarometer for sphene (titanite) , 2008 .

[77]  M. Whitehouse,et al.  Plesovice zircon : A new natural reference material for U-Pb and Hf isotopic microanalysis , 2008 .

[78]  C. Clark,et al.  Thermobarometric modelling of zircon and monazite growth in melt‐bearing systems: examples using model metapelitic and metapsammitic granulites , 2008 .

[79]  J. Schwartz,et al.  Timing and Duration of the Calc‐Alkaline Arc of the Pampean Orogeny: Implications for the Late Neoproterozoic to Cambrian Evolution of Western Gondwana , 2008, The Journal of Geology.

[80]  R. Wirth,et al.  Pb diffusion in monazite: New constraints from the experimental study of Pb2+⇔Ca2+ interdiffusion , 2007 .

[81]  R. Pankhurst,et al.  The Río de la Plata craton and the assembly of SW Gondwana , 2007 .

[82]  R. Powell,et al.  Progress relating to calculation of partial melting equilibria for metapelites , 2007 .

[83]  Michael J. Jercinovic,et al.  Geochronology: Understanding Geologic Processes by Integrating Composition and Chronology , 2007 .

[84]  Michael J. Jercinovic,et al.  Dating metamorphic reactions and fluid flow: application to exhumation of high‐P granulites in a crustal‐scale shear zone, western Canadian Shield , 2006 .

[85]  J. B. Thomas,et al.  Crystallization thermometers for zircon and rutile , 2006 .

[86]  R. Powell,et al.  An in situ metatexite–diatexite transition in upper amphibolite facies rocks from Broken Hill, Australia , 2005 .

[87]  R. Handler,et al.  Ordovician metamorphism and plutonism in the Sierra de Quilmes metamorphic complex: Implications for the tectonic setting of the northern Sierras Pampeanas (NW Argentina) , 2005 .

[88]  Peter A. Cawood,et al.  Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic , 2005 .

[89]  J. Saavedra,et al.  Grenvillian massif-type anorthosites in the Sierras Pampeanas , 2005, Journal of the Geological Society.

[90]  R. Hyndman,et al.  The thermal structure of subduction zone back arcs , 2004 .

[91]  William L. Griffin,et al.  The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology , 2004 .

[92]  J. Otamendi,et al.  Cambrian to Devonian Geologic Evolution of the Sierra de Comechingones, Eastern Sierras Pampeanas, Argentina: Evidence for the Development and Exhumation of Continental Crust on the Proto-Pacific Margin of Gondwana , 2004 .

[93]  F. Dávila,et al.  Ordovician back arc foreland and Ocloyic thrust belt development on the western Gondwana margin as a response to Precordillera terrane accretion , 2004 .

[94]  M. Whitehouse,et al.  55 million years of continuous anatexis in Central Iberia: single-zircon dating of the Peña Negra Complex , 2004, Journal of the Geological Society.

[95]  E. Watson,et al.  Pb diffusion in monazite: a combined RBS/SIMS study , 2004 .

[96]  J. Schwartz,et al.  Provenance of a late Proterozoic–early Cambrian basin, Sierras de Córdoba, Argentina , 2004 .

[97]  R. Martino Ductile deformation shear belts at Pampean Ranges near Córdoba, Central Argentina: A Review , 2003 .

[98]  R. Wirth,et al.  Transmission electron microscope study of polyphase and discordant monazites: Site-specific specimen preparation using the focused ion beam technique , 2003 .

[99]  R. Korsch,et al.  TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology , 2003 .

[100]  S. Cox,et al.  Rare earth and trace element mobility in mid-crustal shear zones: insights from the Mont Blanc Massif (Western Alps) , 2003 .

[101]  F. Lucassen,et al.  Timing of high‐grade metamorphism: Early Palaeozoic U–Pb formation ages of titanite indicate long‐standing high‐T conditions at the western margin of Gondwana (Argentina, 26–29°S) , 2003 .

[102]  R. Powell,et al.  Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation , 2003 .

[103]  A. Rapalini,et al.  “Proterozoic–Early Paleozoic evolution in western South America—a discussion” in: Tectonophysics, 354: 121–137 (2002) , 2003 .

[104]  J. Platt,et al.  Dating high-grade metamorphism—constraints from rare-earth elements in zircon and garnet , 2003 .

[105]  U. Schaltegger,et al.  The Composition of Zircon and Igneous and Metamorphic Petrogenesis , 2003 .

[106]  G. Foster,et al.  Textural, chemical and isotopic insights into the nature and behaviour of metamorphic monazite , 2002 .

[107]  T. Holland,et al.  Mixing properties of phengitic micas and revised garnet‐phengite thermobarometers , 2002 .

[108]  H. Miller,et al.  Proterozoic–Early Paleozoic evolution in western South America—a discussion , 2002 .

[109]  D. Rubatto Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism , 2002 .

[110]  R. Powell,et al.  The interpretation of reaction textures in Fe‐rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 , 2002 .

[111]  C. Beaumont,et al.  Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation , 2001, Nature.

[112]  D. Cherniak,et al.  Pb diffusion in zircon , 2001 .

[113]  J. Schumacher,et al.  Sphene (titanite): phase relations and role as a geochronometer , 2001 .

[114]  J. Viramonte,et al.  Proterozoic–Paleozoic development of the basement of the Central Andes (18–26°S) — a mobile belt of the South American craton , 2000 .

[115]  L. P. Black,et al.  Metamorphic zircon formation by solid‐state recrystallization of protolith igneous zircon , 2000 .

[116]  A. Seilacher,et al.  Puncoviscana folded belt in northwestern Argentina: testimony of Late Proterozoic Rodinia fragmentation and pre-Gondwana collisional episodes , 1999 .

[117]  J. Saavedra,et al.  Early evolution of the Proto-Andean margin of South America , 1998 .

[118]  R. Powell,et al.  Calculating phase diagrams involving solid solutions via non‐linear equations, with examples using THERMOCALC , 1998 .

[119]  Roger Powell,et al.  An internally consistent thermodynamic data set for phases of petrological interest , 1998 .

[120]  Ian S. Williams,et al.  Pb, U and Th diffusion in natural zircon , 1997, Nature.

[121]  F. Hervé,et al.  Geodynamic evolution and tectonostratigraphic terranes of northwestern Argentina and northern Chile , 1997 .

[122]  R. Powell,et al.  The effect of Mn on mineral stability in metapelites , 1997 .

[123]  E. Krogstad,et al.  Interpretation of discordant U‐Pb zircon ages: An evaluation , 1997 .

[124]  M. St-Onge,et al.  Constraints on Pb closure temperature in titanite based on rocks from the Ungava orogen, Canada: Implications for U-Pb geochronology and P-T-t path determinations , 1995 .

[125]  R. Astini,et al.  The early Paleozoic evolution of the Argentine Precordillera as a Laurentian rifted, drifted, and collided terrane: A geodynamic model , 1995 .

[126]  Janick F Artiola,et al.  Using Geochemical Data: Evaluation, Presentation, Interpretation , 1994 .

[127]  S. Kay,et al.  Paleozoic terranes of the central Argentine‐Chilean Andes , 1986 .

[128]  R. Kretz Symbols for rock-forming minerals , 1983 .

[129]  J. Mattinson Age, origin, and thermal histories of some plutonic rocks from the Salinian block of California , 1978 .

[130]  Martin H. Dodson,et al.  Closure temperature in cooling geochronological and petrological systems , 1973 .

[131]  K. Hamza,et al.  A 60-Myr record of continental back-arc differentiation through cyclic melting , 2019, Nature Geoscience.

[132]  W. Collins,et al.  Laurentian origin of the Cuyania suspect terrane, western Argentina, confirmed by Hf isotopes in zircon , 2019, GSA Bulletin.

[133]  P. DeCelles,et al.  Exhumation of the Precordillera and northern Sierras Pampeanas and along-strike correlation of the Andean orogenic front, northwestern Argentina , 2015 .

[134]  P. DeCelles,et al.  Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile , 2015 .

[135]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[136]  W. Griffin,et al.  The Pacific Gondwana margin in the late Neoproterozoic–early Paleozoic: Detrital zircon U–Pb ages from metasediments in northwest Argentina reveal their maximum age, provenance and tectonic setting , 2011 .

[137]  M. Matteini,et al.  Combined U–Pb and Lu–Hf isotope data on turbidites of the Paleozoic basement of NW Argentina and petrology of associated igneous rocks: Implications for the tectonic evolution of western Gondwana between 560 and 460 Ma , 2011 .

[138]  D. Cherniak Diffusion in Accessory Minerals: Zircon, Titanite, Apatite, Monazite and Xenotime , 2010 .

[139]  Michael Brown Melting of the continental crust during orogenesis: the thermal, rheological, and compositional consequences of melt transport from lower to upper continental crust1 , 2010 .

[140]  U. Klötzli,et al.  Timing and rate of granulite facies metamorphism and cooling from multi-mineral chronology on migmatitic gneisses, Sierras de La Huerta and Valle Fértil, NW Argentina , 2010 .

[141]  L. Srogi,et al.  Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite , 2006 .

[142]  J. Braun,et al.  Quantitative Thermochronology: Numerical Methods for the Interpretation of Thermochronological Data , 2006 .

[143]  R. Pankhurst,et al.  Age and origin of coeval TTG, I- and S-type granites in the Famatinian belt of NW Argentina , 2000, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[144]  R. Astini Stratigraphical evidence supporting the rifting, drifting and collision of the Laurentian Precordillera terrane of western Argentina , 1998, Geological Society, London, Special Publications.

[145]  A. Camacho,et al.  U-Pb, Th-Pb and Ar-Ar geochronology from the southern Sierras Pampeanas, Argentina: implications for the Palaeozoic tectonic evolution of the western Gondwana margin , 1998, Geological Society, London, Special Publications.

[146]  J. Saavedra,et al.  The Famatinian magmatic arc in the central Sierras Pampeanas: an Early to Mid-Ordovician continental arc on the Gondwana margin , 1998, Geological Society, London, Special Publications.

[147]  L. Snee,et al.  Geology of the Sierra de Fiambalá, northwestern Argentina: implications for Early Palaeozoic Andean tectonics , 1998, Geological Society, London, Special Publications.

[148]  J. Saavedra,et al.  The Pampean Orogeny of the southern proto-Andes: Cambrian continental collision in the Sierras de Córdoba , 1998, Geological Society, London, Special Publications.

[149]  J.-L. Pouchou,et al.  Quantitative Analysis of Homogeneous or Stratified Microvolumes Applying the Model “PAP” , 1991 .

[150]  Carlos W. Rapela Las rocas granitoides de la región de Cafayate, provincia de Salta , 1976 .

[151]  R. Howie,et al.  An Introduction to the Rock-Forming Minerals , 1966 .