Application of Gaussian Error Propagation Principles for Theoretical Assessment of Model Uncertainty in Simulated Soil Processes Caused by Thermal and Hydraulic Parameters

Statistical uncertainty in soil temperature and volumetric water content and related moisture and heat fluxes predicted by a state-of-the-art soil module [embedded in a numerical weather prediction (NWP) model] is analyzed by Gaussian error-propagation (GEP) principles. This kind of uncertainty results from the indispensable use of empirical soil parameters. Since for the same thermodynamic and hydrological surface forcing and mean empirical parameters a soil module always provides the same mean value and standard deviation, uncertainty is first theoretically analyzed using artificial data for a wide range of soil conditions. Second, NWP results obtained for Alaska during a July episode are elucidated in relation to the authors’ theoretical findings. It is shown that uncertainty in predicted soil temperature and volumetric water content is of minor importance except during phase transition. Then the freeze–thaw term dominates and leads to soil temperature and moisture uncertainties of more than 15.8 K and 0.212 m 3 m 3 in mineral soils. Heat-flux uncertainty is of the same order of magnitude as typical errors in soil-heat-flux measurements. Uncertainty in the pore-size distribution index dominates uncertainty for all state variables and soil fluxes under most conditions. Uncertainties in hydraulic parameters (saturated hydraulic conductivity, pore-size distribution index, porosity, saturated water potential) affect soil-temperature uncertainty more than those in thermal parameters (density and specific heat capacity of dry soil material). Based on a thermal conductivity approach alternatively used, it is demonstrated that GEP principles are indispensable for evaluating parameterized soil-transfer processes. Generally, statistical uncertainty decreases with depth. Close beneath the surface, the uncertainty in predicted soil temperature, volumetric water content, and soil-moisture and heat fluxes undergoes a diurnal cycle.

[1]  D. Verseghy,et al.  Class—A Canadian land surface scheme for GCMS. I. Soil model , 2007 .

[2]  A. Pitman,et al.  Simulation of freeze‐thaw cycles in a general circulation model land surface scheme , 1998 .

[3]  Zong-Liang Yang,et al.  Preliminary study of spin‐up processes in land surface models with the first stage data of Project for Intercomparison of Land Surface Parameterization Schemes Phase 1(a) , 1995 .

[4]  K. Emanuel,et al.  The Kuo Cumulus Parameterization , 1993 .

[5]  Wanqiu Wang,et al.  A GCM assessment of atmospheric seasonal predictability associated with soil moisture anomalies over North America , 1998 .

[6]  Y. Xue,et al.  Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models , 1995 .

[7]  Andreas Rhodin,et al.  A case study on variational soil moisture analysis from atmospheric observations , 1998 .

[8]  Zong-Liang Yang,et al.  Effects of vegetation canopy processes on snow surface energy and mass balances , 2004 .

[9]  Sabine Grunwald,et al.  Development of pedotransfer functions for a profile cone penetrometer , 2001 .

[10]  G. Kramm,et al.  Long-term investigations on the water budget quantities predicted by the hydro-thermodynamic soil vegetation scheme (HTSVS) – Part II: Evaluation, sensitivity, and uncertainty , 2003 .

[11]  J. M. Bigham,et al.  Predicting bulk density of Ohio Soils from Morphology, Genetic Principles, and Laboratory Characterization Data , 2001 .

[12]  H. Douville,et al.  Relevance of soil moisture for seasonal climate predictions: a preliminary study , 2000 .

[13]  G. Gutman,et al.  The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models , 1998 .

[14]  Jean-François Mahfouf,et al.  The representation of soil moisture freezing and its impact on the stable boundary layer , 1999 .

[15]  Pedro Viterbo,et al.  An Improved Land Surface Parameterization Scheme in the ECMWF Model and Its Validation. , 1995 .

[16]  J. Dudhia A Nonhydrostatic Version of the Penn State–NCAR Mesoscale Model: Validation Tests and Simulation of an Atlantic Cyclone and Cold Front , 1993 .

[17]  Ann Henderson-Sellers,et al.  Sensitivity of the biosphere-atmosphere transfer scheme (BATS) to the inclusion of variable soil characteristics , 1987 .

[18]  G. Hornberger,et al.  A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils , 1984 .

[19]  R. Rasmussen,et al.  Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model , 1998 .

[20]  A. Boone,et al.  A Parameterization for Land–Atmosphere-Cloud Exchange (PLACE): Documentation and Testing of a Detailed Process Model of the Partly Cloudy Boundary Layer over Heterogeneous Land , 1995 .

[21]  Ann Henderson-Sellers,et al.  A Factorial Assessment of the Sensitivity of the BATS Land-Surface Parameterization Scheme , 1993 .

[22]  Rolf Reichle,et al.  Variational data assimilation of microwave radiobrightness observations for land surface hydrology applications , 2001, IEEE Trans. Geosci. Remote. Sens..

[23]  Zong-Liang Yang,et al.  Validation of the Snow Submodel of the Biosphere-Atmosphere Transfer Scheme with Russian Snow Cover and Meteorological Observational Data , 1997 .

[24]  D. D. Vries,et al.  Simultaneous transfer of heat and moisture in porous media , 1958 .

[25]  G. Grell,et al.  A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5) , 1994 .

[26]  D. Vries Thermal properties of soils , 1963 .

[27]  Kun Yang,et al.  Inverse analysis of the role of soil vertical heterogeneity in controlling surface soil state and energy partition , 2005 .

[28]  R. Dickinson,et al.  Effects of frozen soil on soil temperature, spring infiltration, and runoff: Results from the PILPS 2(d) experiment at Valdai, Russia , 2003 .

[29]  J. E. Walsh,et al.  Atmospheric response to soil-frost and snow in Alaska in March , 2004 .

[30]  A. Laurén,et al.  Physical properties of the mor layer in a Scots pine stand I. Hydraulic conductivity , 1997 .

[31]  R. Pielke,et al.  Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model: 1. Soil layer , 1981 .

[32]  J. R. Philip,et al.  Moisture movement in porous materials under temperature gradients , 1957 .

[33]  N. Mölders On the uncertainty in mesoscale modeling caused by surface parameters , 2001 .

[34]  H. Mengelkamp,et al.  Treatment of frozen soil and snow cover in the land surface model SEWAB , 2001 .

[35]  G. Kramm,et al.  Long-term investigations on the water budget quantities predicted by the hydro-thermodynamic soil vegetation scheme (HTSVS) – Part I: Description of the model and impact of long-wave radiation, roots, snow, and soil frost , 2003 .

[36]  Wim G.M. Bastiaanssen,et al.  A New Methodology for Assimilation of Initial Soil Moisture Fields in Weather Prediction Models Using Meteosat and NOAA Data. , 1997 .

[37]  A. Henderson‐sellers,et al.  Modeling soil moisture: A Project for Intercomparison of Land Surface Parameterization Schemes Phase 2(b) , 1996 .

[38]  Armin Raabe,et al.  A comparison of two strategies on land surface heterogeneity used in a mesoscale β meteorological model , 1996 .

[39]  Ian R. Calder,et al.  The impact of land use change on water resources in sub-Saharan Africa: a modelling study of Lake Malawi , 1995 .

[40]  M. Ek,et al.  Impact of soil water property parameterization on atmospheric boundary layer simulation , 1996 .

[41]  Ying-Hwa Kuo,et al.  Semiprognostic Tests of Cumulus Parameterization Schemes in the Middle Latitudes , 1988 .

[42]  Eric F. Wood,et al.  The Effect of Soil Thermal Conductivity Parameterization on Surface Energy Fluxes and Temperatures , 1998 .

[43]  Jonathan S. Price,et al.  Soil water flow dynamics in a managed cutover peat field, Quebec: Field and laboratory investigations , 1999 .

[44]  Douglas A. Miller,et al.  A Conterminous United States Multilayer Soil Characteristics Dataset for Regional Climate and Hydrology Modeling , 1998 .

[45]  Soroosh Sorooshian,et al.  Sensitivity analysis of the biosphere‐atmosphere transfer scheme , 1996 .

[46]  Roger A. Pielke,et al.  A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology , 1989 .

[47]  S. D. Groot,et al.  Thermodynamics of Irreversible Processes , 2018, Principles of Thermodynamics.

[48]  Yaping Shao,et al.  On the Choice of Soil Hydraulic Models in Land-Surface Schemes , 1999 .

[49]  Gerald N. Flerchinger,et al.  Simultaneous Heat and Water Model of a Freezing Snow-Residue-Soil System I. Theory and Development , 1989 .

[50]  M. Woo,et al.  Hydrology of Two Slopes in Subarctic Yukon, Canada , 1999 .

[51]  Thomas Foken,et al.  A SVAT scheme for NO, NO2, and O3 — Model description and test results , 1996 .

[52]  Zong-Liang Yang,et al.  The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS): Phases 2 and 3 , 1993 .

[53]  G. Hornberger,et al.  Empirical equations for some soil hydraulic properties , 1978 .

[54]  N. Montaldo,et al.  On the Use of the Force-Restore SVAT Model Formulation for Stratified Soils , 2001 .

[55]  H. Pan,et al.  Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model , 1996 .

[56]  J. Dudhia,et al.  Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity , 2001 .