Accelerated primal–dual proximal block coordinate updating methods for constrained convex optimization

Block coordinate update (BCU) methods enjoy low per-update computational complexity because every time only one or a few block variables would need to be updated among possibly a large number of blocks. They are also easily parallelized and thus have been particularly popular for solving problems involving large-scale dataset and/or variables. In this paper, we propose a primal–dual BCU method for solving linearly constrained convex program with multi-block variables. The method is an accelerated version of a primal–dual algorithm proposed by the authors, which applies randomization in selecting block variables to update and establishes an O(1 / t) convergence rate under convexity assumption. We show that the rate can be accelerated to $$O(1/t^2)$$O(1/t2) if the objective is strongly convex. In addition, if one block variable is independent of the others in the objective, we then show that the algorithm can be modified to achieve a linear rate of convergence. The numerical experiments show that the accelerated method performs stably with a single set of parameters while the original method needs to tune the parameters for different datasets in order to achieve a comparable level of performance.

[1]  Daniel Boley,et al.  Local Linear Convergence of the Alternating Direction Method of Multipliers on Quadratic or Linear Programs , 2013, SIAM J. Optim..

[2]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[3]  Bingsheng He,et al.  The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent , 2014, Mathematical Programming.

[4]  Bingsheng He,et al.  On Full Jacobian Decomposition of the Augmented Lagrangian Method for Separable Convex Programming , 2015, SIAM J. Optim..

[5]  Yangyang Xu,et al.  Randomized Primal–Dual Proximal Block Coordinate Updates , 2016, Journal of the Operations Research Society of China.

[6]  Shuzhong Zhang,et al.  First-Order Algorithms for Convex Optimization with Nonseparable Objective and Coupled Constraints , 2017 .

[7]  Bingsheng He,et al.  On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..

[8]  Xiaoming Yuan,et al.  On the acceleration of augmented Lagrangian method for linearly constrained optimization , 2010 .

[9]  Yurii Nesterov,et al.  Gradient methods for minimizing composite functions , 2012, Mathematical Programming.

[10]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[11]  Yangyang Xu,et al.  Asynchronous parallel primal–dual block coordinate update methods for affinely constrained convex programs , 2017, Comput. Optim. Appl..

[12]  Kristian Bredies,et al.  Accelerated Douglas-Rachford methods for the solution of convex-concave saddle-point problems , 2016, 1604.06282.

[13]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[14]  Yurii Nesterov,et al.  Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..

[15]  Guanghui Lan,et al.  Randomized First-Order Methods for Saddle Point Optimization , 2014, 1409.8625.

[16]  Peter Richtárik,et al.  Parallel coordinate descent methods for big data optimization , 2012, Mathematical Programming.

[17]  Ming Yan,et al.  ARock: an Algorithmic Framework for Asynchronous Parallel Coordinate Updates , 2015, SIAM J. Sci. Comput..

[18]  Patrick L. Combettes,et al.  Stochastic Quasi-Fejér Block-Coordinate Fixed Point Iterations with Random Sweeping , 2014 .

[19]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[20]  Ming Yan,et al.  Coordinate Friendly Structures, Algorithms and Applications , 2016, ArXiv.

[21]  Kim-Chuan Toh,et al.  A Convergent 3-Block Semi-Proximal ADMM for Convex Minimization Problems with One Strongly Convex Block , 2014, Asia Pac. J. Oper. Res..

[22]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[23]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[24]  D. Donoho,et al.  Atomic Decomposition by Basis Pursuit , 2001 .

[25]  J. Pesquet,et al.  A Class of Randomized Primal-Dual Algorithms for Distributed Optimization , 2014, 1406.6404.

[26]  Shiqian Ma,et al.  On the Global Linear Convergence of the ADMM with MultiBlock Variables , 2014, SIAM J. Optim..

[27]  Yangyang Xu,et al.  Hybrid Jacobian and Gauss-Seidel Proximal Block Coordinate Update Methods for Linearly Constrained Convex Programming , 2016, SIAM J. Optim..

[28]  Yunmei Chen,et al.  An Accelerated Linearized Alternating Direction Method of Multipliers , 2014, SIAM J. Imaging Sci..

[29]  Peter Richtárik,et al.  Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function , 2011, Mathematical Programming.

[30]  Wotao Yin,et al.  Parallel Multi-Block ADMM with o(1 / k) Convergence , 2013, Journal of Scientific Computing.

[31]  Bingsheng He,et al.  Linearized Alternating Direction Method with Gaussian Back Substitution for Separable Convex Programming , 2011 .

[32]  Yunmei Chen,et al.  Optimal Primal-Dual Methods for a Class of Saddle Point Problems , 2013, SIAM J. Optim..

[33]  Zhouchen Lin,et al.  Optimal Nonergodic $O(1/K)$ Convergence Rate: When Linearized ADM Meets Nesterov's Extrapolation , 2016 .

[34]  Wotao Yin,et al.  On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers , 2016, J. Sci. Comput..

[35]  Lin Xiao,et al.  On the complexity analysis of randomized block-coordinate descent methods , 2013, Mathematical Programming.

[36]  Renato D. C. Monteiro,et al.  Iteration-Complexity of Block-Decomposition Algorithms and the Alternating Direction Method of Multipliers , 2013, SIAM J. Optim..

[37]  Yangyang Xu,et al.  Accelerated First-Order Primal-Dual Proximal Methods for Linearly Constrained Composite Convex Programming , 2016, SIAM J. Optim..

[38]  Richard G. Baraniuk,et al.  Fast Alternating Direction Optimization Methods , 2014, SIAM J. Imaging Sci..

[39]  Gareth M. James,et al.  Penalized and Constrained Regression , 2013 .