Wavelet based fast solution of boundary integral equations
暂无分享,去创建一个
[1] W. Dahmen,et al. Multilevel preconditioning , 1992 .
[2] Wolfgang Dahmen,et al. A multiscale method for the double layer potential equation on a polyhedron. , 2005 .
[3] Wolfgang Dahmen,et al. Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..
[4] Ernst P. Stephan,et al. Adaptive multilevel BEM for acoustic scattering , 1997 .
[5] W. Dahmen. Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.
[6] Birgit Faermann,et al. Local a-posteriori error indicators for the Galerkin discretization of boundary integral equations , 1998 .
[7] Wolfgang Dahmen,et al. Compression Techniques for Boundary Integral Equations - Optimal Complexity Estimates , 2006 .
[8] Christoph Schwab. Variable order composite quadrature of singular and nearly singular integrals , 2005, Computing.
[9] Wolfgang Dahmen,et al. Composite wavelet bases for operator equations , 1999, Math. Comput..
[10] Christoph Schwab,et al. Fully Discrete Multiscale Galerkin BEM , 1997 .
[11] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[12] Claudio Canuto,et al. The wavelet element method. Part I: Construction and analysis. , 1997 .
[13] W. Dahmen,et al. Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .
[14] Reinhold Schneider,et al. Biorthogonal wavelet approximation for the coupling of FEM-BEM , 2002, Numerische Mathematik.
[15] Ernst P. Stephan,et al. An adaptive two-level method for hypersingular integral equations in \(R^3\) , 2000 .
[16] Reinhold Schneider,et al. Multiwavelets for Second-Kind Integral Equations , 1997 .
[17] Olaf Steinbach,et al. A new a posteriori error estimator in adaptive direct boundary element method , 2000 .
[18] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[19] Wolfgang Dahmen,et al. Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..
[20] L. Villemoes. Wavelet analysis of refinement equations , 1994 .
[21] R. Coifman,et al. Fast wavelet transforms and numerical algorithms I , 1991 .
[22] J. Nédélec. Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .
[23] Wolfgang Dahmen,et al. Nonlinear functionals of wavelet expansions – adaptive reconstruction and fast evaluation , 2000, Numerische Mathematik.
[24] Carsten Carstensen,et al. Adaptive Boundary Element Methods for Some First Kind Integral Equations , 1996 .
[25] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[26] Albert Cohen,et al. Wavelet adaptive method for second order elliptic problems: boundary conditions and domain decomposition , 2000, Numerische Mathematik.
[27] H. Harbrecht,et al. Wavelet Galerkin Schemes for 2D-BEM , 2001 .
[28] Olaf Steinbach,et al. A new a posteriori error estimator in adaptive direct boundary element methods: the Dirichlet problem , 2000 .
[29] M. G. Duffy,et al. Quadrature Over a Pyramid or Cube of Integrands with a Singularity at a Vertex , 1982 .
[30] H. Harbrecht,et al. Numerische Simulation Auf Massiv Parallelen Rechnern Least Squares Methods for the Coupling of Fem and Bem Preprint-reihe Des Chemnitzer Sfb 393 , 2022 .
[31] W. Hackbusch,et al. On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .