Massively scalable Kerr comb-driven silicon photonic link

[1]  C. T. Gray,et al.  A 0.297-pJ/Bit 50.4-Gb/s/Wire Inverter-Based Short-Reach Simultaneous Bi-Directional Transceiver for Die-to-Die Interface in 5-nm CMOS , 2023, IEEE Journal of Solid-State Circuits.

[2]  Asher Novick,et al.  Low-Loss Wide-FSR Miniaturized Racetrack Style Microring Filters for ⩾1 Tbps DWDM , 2023, 2023 Optical Fiber Communications Conference and Exhibition (OFC).

[3]  Thomas H. Greer,et al.  Beyond CPO: A Motivation and Approach for Bringing Optics Onto the Silicon Interposer , 2023, Journal of Lightwave Technology.

[4]  A. Willner,et al.  Multi-Dimensional Data , 2012 .

[5]  S. Papp,et al.  Tailoring microcombs with inverse-designed, meta-dispersion microresonators , 2022, Nature Photonics.

[6]  I. De Wolf,et al.  Thermal Modelling of Silicon Photonic Ring Modulator with Substrate Undercut , 2022, Journal of Lightwave Technology.

[7]  Alexandre P. Freitas,et al.  Fabrication-robust silicon photonic devices in standard sub-micron silicon-on-insulator processes. , 2022, Optics letters.

[8]  Bok Young Kim,et al.  Coherent Combining for High-Power Kerr Combs , 2022, Conference on Lasers and Electro-Optics.

[9]  J. Zang,et al.  Near Unit Efficiency in Microresonator Combs , 2022, 2022 Conference on Lasers and Electro-Optics (CLEO).

[10]  K. Bergman,et al.  Wafer-Scale-Compatible Substrate Undercut for Ultra-Efficient SOI Thermal Phase Shifters , 2022, 2022 Conference on Lasers and Electro-Optics (CLEO).

[11]  K. Bergman,et al.  Mitigation of parasitic junction formation in compact resonant modulators with doped silicon heaters , 2022, LASE.

[12]  M. Lipson,et al.  Conversion efficiency of soliton Kerr combs. , 2021, Optics letters.

[13]  M. Lipson,et al.  Methods to achieve ultra-high quality factor silicon nitride resonators , 2021, APL Photonics.

[14]  Nathan C. Abrams,et al.  3D-Integrated Multichip Module Transceiver for Terabit-Scale DWDM Interconnects , 2021, 2021 Optical Fiber Communications Conference and Exhibition (OFC).

[15]  Vladimir Stojanovic,et al.  An Error-free 1 Tbps WDM Optical I/O Chiplet and Multi-wavelength Multi-port Laser , 2021, 2021 Optical Fiber Communications Conference and Exhibition (OFC).

[16]  J. Heck,et al.  Post-Fabrication Trimming of Silicon Photonic Ring Resonators at Wafer-Scale , 2021, Journal of Lightwave Technology.

[17]  Bok Young Kim,et al.  Synchronization of nonsolitonic Kerr combs , 2021, Science advances.

[18]  T. Hoshida,et al.  Cascaded AMZ triplets: a class of demultiplexers having a monitor and control scheme enabling dense WDM on Si nano-waveguide PICs with ultralow crosstalk and high spectral efficiency. , 2021, Optics express.

[19]  Nanyan Y. Wang,et al.  11.2 A 26.5625-to-106.25Gb/s XSR SerDes with 1.55pJ/b Efficiency in 7nm CMOS , 2021, 2021 IEEE International Solid- State Circuits Conference (ISSCC).

[20]  L. Oxenløwe,et al.  Chip-based optical frequency combs for high-capacity optical communications , 2021, Nanophotonics.

[21]  Hao Li,et al.  A 3-D-Integrated Silicon Photonic Microring-Based 112-Gb/s PAM-4 Transmitter With Nonlinear Equalization and Thermal Control , 2021, IEEE Journal of Solid-State Circuits.

[22]  M. Lipson,et al.  Exploiting Ultralow Loss Multimode Waveguides for Broadband Frequency Combs , 2020, Laser & Photonics Reviews.

[23]  K. Bergman,et al.  Ultra-Broadband Interleaver for Extreme Wavelength Scaling in Silicon Photonic Links , 2020, IEEE Photonics Technology Letters.

[24]  Paolo Costa,et al.  Ultrafast optical circuit switching for data centers using integrated soliton microcombs , 2020, Nature Communications.

[25]  K. Vahala,et al.  Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators , 2020, Nature Photonics.

[26]  Leif Katsuo Oxenløwe,et al.  Intra-Datacenter Interconnects With a Serialized Silicon Optical Frequency Comb Modulator , 2020, Journal of Lightwave Technology.

[27]  N. J. Engelsen,et al.  High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits , 2020, Nature Communications.

[28]  Nicolas A. F. Jaeger,et al.  Free-spectral-range-free microring-based coupling modulator with integrated contra-directional-couplers , 2020, OPTO.

[29]  Binhao Wang,et al.  Integrated Green DWDM Photonics for Next-Gen High-Performance Computing , 2020, 2020 Optical Fiber Communications Conference and Exhibition (OFC).

[30]  Mark Wade,et al.  TeraPHY: A Chiplet Technology for Low-Power, High-Bandwidth In-Package Optical I/O , 2020, IEEE Micro.

[31]  Binhao Wang,et al.  Energy Efficiency Analysis of Comb Source Carrier-Injection Ring-Based Silicon Photonic Link , 2020, IEEE Journal of Selected Topics in Quantum Electronics.

[32]  Sailong Wu,et al.  Edge Couplers in Silicon Photonic Integrated Circuits: A Review , 2020, Applied Sciences.

[33]  W. Bogaerts,et al.  Silicon ring resonators with a free spectral range robust to fabrication variations. , 2019, Optics express.

[34]  John E. Bowers,et al.  Integrated turnkey soliton microcombs , 2019, Nature.

[35]  P. Leisher,et al.  High power single mode photonic integration , 2019, 2019 IEEE High Power Diode Lasers and Systems Conference (HPD).

[36]  Douglas D. Coolbaugh,et al.  The AIM Photonics MPW: A Highly Accessible Cutting Edge Technology for Rapid Prototyping of Photonic Integrated Circuits , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[37]  Rajeev J Ram,et al.  Power handling of silicon microring modulators. , 2019, Optics express.

[38]  Michal Lipson,et al.  Turn-Key, High-Efficiency Kerr Comb Source , 2019, 2020 Conference on Lasers and Electro-Optics (CLEO).

[39]  Qixiang Cheng,et al.  Silicon photonic switch-based optical equalization for mitigating pulsewidth distortion. , 2019, Optics express.

[40]  Andrew McCallum,et al.  Energy and Policy Considerations for Deep Learning in NLP , 2019, ACL.

[41]  Javier Ayala,et al.  300-mm Monolithic Silicon Photonics Foundry Technology , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[42]  Madeleine Glick,et al.  Ultra-low power consumption silicon photonic link design analysis in the AIM PDK , 2019, OPTO.

[43]  Lucien E. Weiss,et al.  Ring resonator based polarization diversity WDM receiver. , 2019, Optics express.

[44]  Michal Lipson,et al.  Photonic-chip-based frequency combs , 2019, Nature Photonics.

[45]  L. Chrostowski,et al.  Bandwidth-tunable, FSR-free, microring-based, SOI filter with integrated contra-directional couplers. , 2018, Optics letters.

[46]  Qixiang Cheng,et al.  Recent advances in optical technologies for data centers: a review , 2018, Optica.

[47]  Marko Loncar,et al.  Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation , 2018, Nature Communications.

[48]  Diedrik Vermeulen,et al.  Transmissive silicon photonic dichroic filters with spectrally selective waveguides , 2018, Nature Communications.

[49]  L. Chrostowski,et al.  FSR-Free Microring-based Modulator , 2018, International Conference on Group IV Photonics.

[50]  Toshio Morioka,et al.  Single-source chip-based frequency comb enabling extreme parallel data transmission , 2018, Nature Photonics.

[51]  K. Rebibis,et al.  Hybrid 14nm FinFET - Silicon Photonics Technology for Low-Power Tb/s/mm2 Optical I/O , 2018, 2018 IEEE Symposium on VLSI Technology.

[52]  Rajeev J Ram,et al.  Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip , 2018, Nature.

[53]  M. Lipson,et al.  Fully integrated ultra-low power Kerr comb generation , 2018 .

[54]  P. Andrekson,et al.  High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators , 2018, Nature Communications.

[55]  Michal Lipson,et al.  Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold , 2017 .

[56]  Xu Wang,et al.  Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability. , 2017, Optics express.

[57]  T. Kippenberg,et al.  Microresonator-based solitons for massively parallel coherent optical communications , 2016, Nature.

[58]  D. Miller,et al.  Attojoule Optoelectronics for Low-Energy Information Processing and Communications , 2016, Journal of Lightwave Technology.

[59]  Sylvie Menezo,et al.  A 25 Gb/s 3D-Integrated CMOS/Silicon-Photonic Receiver for Low-Power High-Sensitivity Optical Communication , 2016, Journal of Lightwave Technology.

[60]  John D. Siirola,et al.  Operation of high-speed silicon photonic micro-disk modulators at cryogenic temperatures , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[61]  G. Lo,et al.  Silicon Photonics Transmitter with SOA and Semiconductor Mode-Locked Laser , 2016, Scientific Reports.

[62]  W. Choi,et al.  Parametric Characterization of Self-Heating in Depletion-Type Si Micro-Ring Modulators , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[63]  Steven A. Miller,et al.  Thermally controlled comb generation and soliton modelocking in microresonators. , 2016, Optics letters.

[64]  Jeffrey Lee,et al.  Ten-channel discrete multi-tone modulation using silicon microring modulator array , 2016, 2016 Optical Fiber Communications Conference and Exhibition (OFC).

[65]  B. Mikkelsen,et al.  O, E, S, C, and L band silicon photonics coherent modulator/receiver , 2016, 2016 Optical Fiber Communications Conference and Exhibition (OFC).

[66]  Chen Sun,et al.  A 45 nm CMOS-SOI Monolithic Photonics Platform With Bit-Statistics-Based Resonant Microring Thermal Tuning , 2016, IEEE Journal of Solid-State Circuits.

[67]  Rajeev J. Ram,et al.  Single-chip microprocessor that communicates directly using light , 2015, Nature.

[68]  M. Gorodetsky,et al.  Generation of platicons and frequency combs in optical microresonators with normal GVD by modulated pump , 2015, 1508.06850.

[69]  M. Gorodetsky,et al.  Dissipative Kerr solitons in optical microresonators , 2015, Science.

[70]  Marco Fiorentino,et al.  A comb laser-driven DWDM silicon photonic transmitter based on microring modulators. , 2015, Optics express.

[71]  Steven A. Miller,et al.  Tunable frequency combs based on dual microring resonators , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[72]  L. Chrostowski,et al.  Silicon Photonics Design: From Devices to Systems , 2015 .

[73]  Michael Hochberg,et al.  Silicon Parallel Single Mode 48 × 50 Gb/s Modulator and Photodetector Array , 2014, Journal of Lightwave Technology.

[74]  Michal Lipson,et al.  Intermodulation Crosstalk Characteristics of WDM Silicon Microring Modulators , 2014, IEEE Photonics Technology Letters.

[75]  A. Biberman,et al.  An ultralow power athermal silicon modulator , 2014, Nature Communications.

[76]  M. Qi,et al.  Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation , 2014, 1405.6225.

[77]  M. Qi,et al.  Mode interaction aided excitation of dark solitons in microresonators constructed of normal dispersion waveguides , 2014, 1404.2865.

[78]  Michal Lipson,et al.  WDM-compatible mode-division multiplexing on a silicon chip , 2014, Nature Communications.

[79]  Michal Lipson,et al.  Athermal silicon microring resonators with titanium oxide cladding. , 2013, Optics express.

[80]  Ashok V. Krishnamoorthy,et al.  Ring Resonator Modulators in Silicon for Interchip Photonic Links , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[81]  M. Lauermann,et al.  Coherent terabit communications with microresonator Kerr frequency combs , 2013, Nature Photonics.

[82]  Xi Chen,et al.  A 0.54 pJ/b 20 Gb/s Ground-Referenced Single-Ended Short-Reach Serial Link in 28 nm CMOS for Advanced Packaging Applications , 2013, IEEE Journal of Solid-State Circuits.

[83]  M. Winter,et al.  Quality metrics for optical signals: Eye diagram, Q-factor, OSNR, EVM and BER , 2012, 2012 14th International Conference on Transparent Optical Networks (ICTON).

[84]  H. Thacker,et al.  Enhanced optical bistability from self-heating due to free carrier absorption in substrate removed silicon ring modulators. , 2012, Optics express.

[85]  Anthony L Lentine,et al.  Vertical junction silicon microdisk modulators and switches. , 2011, Optics express.

[86]  Chen Sun,et al.  Addressing link-level design tradeoffs for integrated photonic interconnects , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[87]  Michal Lipson,et al.  High bandwidth on-chip silicon photonic interleaver. , 2010, Optics express.

[88]  J. Cunningham,et al.  Thermally tunable silicon racetrack resonators with ultralow tuning power. , 2010, Optics express.

[89]  M. Amann,et al.  1.55-$\mu$m VCSEL Arrays for High-Bandwidth WDM-PONs , 2008, IEEE Photonics Technology Letters.

[90]  Qianfan Xu,et al.  Cascaded silicon micro-ring modulators for WDM optical interconnection. , 2006, Optics express.

[91]  M. Lipson,et al.  Nanotaper for compact mode conversion. , 2003, Optics letters.

[92]  R.M. Osgood,et al.  Fundamental limitations of optical resonator based high-speed EO modulators , 2002, IEEE Photonics Technology Letters.

[93]  D.A.B. Miller,et al.  Rationale and challenges for optical interconnects to electronic chips , 2000, Proceedings of the IEEE.

[94]  H. Rong,et al.  A 128 Gb/s PAM4 Silicon Microring Modulator With Integrated Thermo-Optic Resonance Tuning , 2019, Journal of Lightwave Technology.

[95]  Mark T. Wade,et al.  Devices and Systems-on-Chip for Photonic Communication Links in a Microprocessor , 2015 .

[96]  Michal Lipson,et al.  CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects , 2010 .

[97]  Henry I. Smith,et al.  Polarization-transparent microphotonic devices in the strong confinement limit , 2007 .