Clustering and clique partitioning: Simulated annealing and tabu search approaches

We study the application of simulated annealing and tabu search to the solution of the clique partitioning problem. We illustrate the effecveness of these techniques by computational results associated not only with randomly generated problems, but also with real-life problems arising from applications concerning the optimal aggregation of binary relations into an equivalence relation. The need for these approaches is emphasized by the example of a special class of instances of the clique partitioning problem for which the most commonly used heuristics perform arbitrarily badly, while tabu search systematically obtains the optimal solution.RésuméNous étudions dans cet article l'application du recuit simulé et de la méthode de recherche tabou dans la résolution du problème de partitionnement de graphes en cliques. Nous illustrons l'efficacité de ces techniques par des résultats numériques associés soit à des problèmes génerés au hasard, soit à des problèmes réels concernant l'agrégation de relations binaires dans une relation d'équivalence. L'intérêt de ces approches est mis en évidence à travers une classe de problèmes pour lesquels les heuristiques les plus connues ont une performance arbitrairement mauvaise, tandis que la méthode de recherche tabou obtient systématiquement des solutions optimales.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  J. Zahn Approximating Symmetric Relations by Equivalence Relations , 1964 .

[3]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[4]  Bernard Monjardet,et al.  The median procedure in cluster analysis and social choice theory , 1981, Math. Soc. Sci..

[5]  Simon Régnier Etudes sur le polyèdre des partitions , 1983 .

[6]  S. Régnier,et al.  Sur quelques aspects mathématiques des problèmes de classification automatique , 1983 .

[7]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[8]  E. Bonomi,et al.  The N-City Travelling Salesman Problem: Statistical Mechanics and the Metropolis Algorithm , 1984 .

[9]  O. Opitz,et al.  Analyse qualitativer Daten: Einführung und Übersicht , 1984 .

[10]  O. Opitz,et al.  Analyse qualitativer Daten: Einführung und Übersicht , 1984 .

[11]  F. Rendl,et al.  A thermodynamically motivated simulation procedure for combinatorial optimization problems , 1984 .

[12]  M. Schader,et al.  Ein Subgradientenverfahren zur Klassifikation qualitativer Daten , 1985 .

[13]  J. Barthelemy,et al.  On the use of ordered sets in problems of comparison and consensus of classifications , 1986 .

[14]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[15]  D. Werra,et al.  Some experiments with simulated annealing for coloring graphs , 1987 .

[16]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[17]  Bernard Debord Axiomatisation de procédures d'agrégation de préférences , 1987 .

[18]  D. F. Wong,et al.  Simulated Annealing for VLSI Design , 1988 .

[19]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..

[20]  Yoshiko Wakabayashi,et al.  A cutting plane algorithm for a clustering problem , 1989, Math. Program..

[21]  Harvey J. Greenberg,et al.  New approaches for heuristic search: A bilateral linkage with artificial intelligence , 1989 .

[22]  Richard C. Dubes,et al.  Experiments in projection and clustering by simulated annealing , 1989, Pattern Recognit..

[23]  Martin Grötschel,et al.  Facets of the clique partitioning polytope , 1990, Math. Program..

[24]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[25]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..