Categorical Vector Space Semantics for Lambek Calculus with a Relevant Modality (Extended Abstract)

We develop a categorical compositional distributional semantics for Lambek Calculus with a Relevant Modality, which has a limited version of the contraction and permutation rules. The categorical part of the semantics is a monoidal biclosed category with a coalgebra modality as defined on Differential Categories. We instantiate this category to finite dimensional vector spaces and linear maps via quantisation functors and work with three concrete interpretations of the coalgebra modality. We apply the model to construct categorical and concrete semantic interpretations for the motivating example of this extended calculus: the derivation of a phrase with a parasitic gap. The effectiveness of the concrete interpretations are evaluated via a disambiguation task, on an extension of a sentence disambiguation dataset to parasitic gap phrases, using BERT, Word2Vec, and FastText vectors and Relational tensors

[1]  Mehrnoosh Sadrzadeh,et al.  A Frobenius Algebraic Analysis for Parasitic Gaps , 2020, FLAP.

[2]  M. Sadrzadeh,et al.  Categorical Vector Space Semantics for Lambek Calculus with a Relevant Modality , 2020, ACT.

[3]  Alois Švec Vector , 2020, Definitions.

[4]  Mehrnoosh Sadrzadeh,et al.  Evaluating Composition Models for Verb Phrase Elliptical Sentence Embeddings , 2019, NAACL.

[5]  Mehrnoosh Sadrzadeh,et al.  A Type-Driven Vector Semantics for Ellipsis with Anaphora Using Lambek Calculus with Limited Contraction , 2019, Journal of Logic, Language and Information.

[6]  Glyn Morrill,et al.  A Note on movement in logical grammar , 2019, J. Lang. Model..

[7]  Mehrnoosh Sadrzadeh,et al.  Classical Copying versus Quantum Entanglement in Natural Language: The Case of VP-ellipsis , 2018, CAPNS@QI.

[8]  M. Moortgat,et al.  Lexical and Derivational Meaning in Vector-Based Models of Relativisation , 2017, ArXiv.

[9]  Gijs Jasper Wijnholds,et al.  Coherent Diagrammatic Reasoning in Compositional Distributional Semantics , 2017, WoLLIC.

[10]  Glyn Morrill,et al.  Grammar logicised: relativisation , 2017 .

[11]  Glyn Morrill,et al.  On the Logic of Expansion in Natural Language , 2016, LACL.

[12]  Tomas Mikolov,et al.  Enriching Word Vectors with Subword Information , 2016, TACL.

[13]  Dimitri Kartsaklis,et al.  Sentence entailment in compositional distributional semantics , 2015, Annals of Mathematics and Artificial Intelligence.

[14]  Max I. Kanovich,et al.  Undecidability of the Lambek Calculus with a Relevant Modality , 2015, FG.

[15]  Mehrnoosh Sadrzadeh,et al.  Concrete Models and Empirical Evaluations for the Categorical Compositional Distributional Model of Meaning , 2015, CL.

[16]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[17]  Dimitri Kartsaklis,et al.  Evaluating Neural Word Representations in Tensor-Based Compositional Settings , 2014, EMNLP.

[18]  Stephen Clark,et al.  The Frobenius anatomy of word meanings I: subject and object relative pronouns , 2013, J. Log. Comput..

[19]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[20]  Dimitri Kartsaklis,et al.  Prior Disambiguation of Word Tensors for Constructing Sentence Vectors , 2013, EMNLP.

[21]  Dimitri Kartsaklis,et al.  Separating Disambiguation from Composition in Distributional Semantics , 2013, CoNLL.

[22]  Mehrnoosh Sadrzadeh,et al.  Lambek vs. Lambek: Functorial vector space semantics and string diagrams for Lambek calculus , 2013, Ann. Pure Appl. Log..

[23]  Mehrnoosh Sadrzadeh,et al.  Experimental Support for a Categorical Compositional Distributional Model of Meaning , 2011, EMNLP.

[24]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[25]  John C. Baez,et al.  Physics, Topology, Logic and Computation: A Rosetta Stone , 2009, 0903.0340.

[26]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2008, J. Assoc. Inf. Sci. Technol..

[27]  J. Robin B. Cockett,et al.  Differential categories , 2006, Mathematical Structures in Computer Science.

[28]  Alain Bruguieres,et al.  Hopf monads , 2006, math/0604180.

[29]  M. Pickering,et al.  Processing ambiguous verbs: evidence from eye movements. , 2001, Journal of experimental psychology. Learning, memory, and cognition.

[30]  T. Landauer,et al.  A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. , 1997 .

[31]  Michael Moortgat,et al.  Multimodal linguistic inference , 1995, J. Log. Lang. Inf..

[32]  Andre Scedrov,et al.  Bounded Linear Logic: A Modular Approach to Polynomial-Time Computability , 1992, Theor. Comput. Sci..

[33]  Glyn Morrill,et al.  Proof Figures and Structural Operators for Categorial Grammar , 1991, EACL.

[34]  J. Humphreys Introduction to Lie Algebras and Representation Theory , 1973 .

[35]  John B. Goodenough,et al.  Contextual correlates of synonymy , 1965, CACM.

[36]  G. Salton,et al.  A document retrieval system for man-machine interaction , 1964, ACM National Conference.

[37]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[38]  Olga Vechtomova Book Review: Introduction to Information Retrieval by Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze , 2009, CL.

[39]  James Richard Curran,et al.  From distributional to semantic similarity , 2004 .

[40]  Gregory Grefenstette,et al.  Explorations in automatic thesaurus discovery , 1994 .

[41]  Prakash Panangaden,et al.  Fock Space: A Model of Linear Exponential Types , 1994 .

[42]  Johan van Benthem,et al.  The Lambek Calculus , 1988 .

[43]  J. R. Firth,et al.  A Synopsis of Linguistic Theory, 1930-1955 , 1957 .

[44]  Zellig S. Harris,et al.  Distributional Structure , 1954 .