Spectroscopic bilinear least-squares methods exploiting the second-order advantage. Theoretical and experimental study concerning accuracy, sensitivity and prediction error

The singular value decomposition (SVD) calibration method followed by least-squares (LS) prediction is discussed. Four different algorithms were applied to second-order instrumental data, all capable of achieving the second-order advantage. Both numerical simulations and experimental data were employed to assess the accuracy and precision of these algorithms, concerning the determination of two therapeutic drugs in spiked human urine and serum samples by fluorescence excitation–emission matrices. Prediction uncertainties were experimentally estimated by sample replication, and also numerically by Monte Carlo noise-addition. Both experimental and Monte Carlo standard errors were found to be in agreement with values provided by error propagation theory, involving the so-called HCD net analyte signal approach, after Ho, Christian and Davidson.

[1]  Bruce R. Kowalski,et al.  Generalized rank annihilation factor analysis , 1986 .

[2]  A. Olivieri,et al.  A test field for the second-order advantage in bilinear least-squares and parallel factor analyses: fluorescence determination of ciprofloxacin in human urine. , 2004, Analytical chemistry.

[3]  J. Kalivas,et al.  Selectivity and Related Measures for nth-Order Data. , 1996, Analytical chemistry.

[4]  N. M. Faber,et al.  The price paid for the second‐order advantage when using the generalized rank annihilation method (GRAM) , 2001 .

[5]  F. Xavier Rius,et al.  Limit of detection estimator for second-order bilinear calibration , 2002 .

[6]  Alejandro C Olivieri,et al.  Computing sensitivity and selectivity in parallel factor analysis and related multiway techniques: the need for further developments in net analyte signal theory. , 2005, Analytical chemistry.

[7]  A. Olivieri Sample‐specific standard prediction errors in three‐way parallel factor analysis (PARAFAC) exploiting the second‐order advantage , 2004 .

[8]  Alejandro C. Olivieri,et al.  A simple approach to uncertainty propagation in preprocessed multivariate calibration , 2002 .

[9]  B. Efron,et al.  A Leisurely Look at the Bootstrap, the Jackknife, and , 1983 .

[10]  Rasmus Bro,et al.  Jack-knife technique for outlier detection and estimation of standard errors in PARAFAC models , 2003 .

[11]  R. Tauler Multivariate curve resolution applied to second order data , 1995 .

[12]  Rolf Sundberg,et al.  Precision of prediction in second‐order calibration, with focus on bilinear regression methods , 2002 .

[13]  Gary D. Christian,et al.  Application of the method of rank annihilation to fluorescent multicomponent mixtures of polynuclear aromatic hydrocarbons , 1980 .

[14]  R. Bro PARAFAC. Tutorial and applications , 1997 .

[15]  F. Xavier Rius,et al.  Estimating uncertainties of analytical results using information from the validation process , 1999 .

[16]  Joseph P. Romano,et al.  Bootstrap technology and applications , 1992 .

[17]  Rolf Sundberg,et al.  Second-order calibration: bilinear least squares regression and a simple alternative , 1998 .

[18]  G. M. Escandar,et al.  Spectrofluorimetric study of the beta-cyclodextrin-ibuprofen complex and determination of ibuprofen in pharmaceutical preparations and serum. , 2003, Talanta.

[19]  G. M. Escandar,et al.  First- and second-order multivariate calibration applied to biological samples: determination of anti-inflammatories in serum and urine , 2002, Analytical and bioanalytical chemistry.

[20]  N. M. Faber,et al.  Uncertainty estimation for multivariate regression coefficients , 2002 .

[21]  Lloyd A. Currie,et al.  Nomenclature in evaluation of analytical methods including detection and quantification capabilities1: (IUPAC Recommendations 1995) , 1999 .

[22]  A. Lorber Error propagation and figures of merit for quantification by solving matrix equations , 1986 .

[23]  Rasmus Bro,et al.  Standard error of prediction for multiway PLS 1 : background and a simulation study , 2002 .

[24]  B. Kowalski,et al.  Advances in second‐order calibration , 1993 .

[25]  Bruce R. Kowalski,et al.  Propagation of measurement errors for the validation of predictions obtained by principal component regression and partial least squares , 1997 .

[26]  S. Wold,et al.  Multi‐way principal components‐and PLS‐analysis , 1987 .

[27]  Ernest R. Davidson,et al.  Three-dimensional rank annihilation for multi-component determinations , 1983 .

[28]  S. Wold,et al.  Residual bilinearization. Part 1: Theory and algorithms , 1990 .

[29]  Nikos D. Sidiropoulos,et al.  Cramer-Rao lower bounds for low-rank decomposition of multidimensional arrays , 2001, IEEE Trans. Signal Process..

[30]  N. M. Faber,et al.  Second-order bilinear calibration : the effects of vectorising the data matrices of the calibration set , 2002 .

[31]  R. Boqué,et al.  Iteratively reweighted generalized rank annihilation method 2. Least squares property and variance expressions , 2001 .

[32]  Nicolaas M. Faber,et al.  Iteratively reweighted generalized rank annihilation method: 1. Improved handling of prediction bias , 2001 .

[33]  Alejandro C Olivieri,et al.  New Robust Bilinear Least Squares Method for the Analysis of Spectral-pH Matrix Data , 2005, Applied spectroscopy.

[34]  Alejandro C. Olivieri,et al.  Standard error of prediction in parallel factor analysis of three-way data , 2004 .

[35]  H. R. Keller,et al.  Assessment of the Quality of Latent Variable Calibrations Based on Monte Carlo Simulations , 1994 .

[36]  Gerrit Kateman,et al.  Generalized rank annihilation method. I: Derivation of eigenvalue problems , 1994 .

[37]  Avraham Lorber,et al.  Analytical figures of merit for tensorial calibration , 1997 .

[38]  R. Bro Multiway calibration. Multilinear PLS , 1996 .