Spectroscopic bilinear least-squares methods exploiting the second-order advantage. Theoretical and experimental study concerning accuracy, sensitivity and prediction error
暂无分享,去创建一个
Graciela M. Escandar | Alejandro C. Olivieri | G. M. Escandar | A. Olivieri | Alejandra Haimovich | Rubén Orselli | R. Orselli | Alejandra Haimovich
[1] Bruce R. Kowalski,et al. Generalized rank annihilation factor analysis , 1986 .
[2] A. Olivieri,et al. A test field for the second-order advantage in bilinear least-squares and parallel factor analyses: fluorescence determination of ciprofloxacin in human urine. , 2004, Analytical chemistry.
[3] J. Kalivas,et al. Selectivity and Related Measures for nth-Order Data. , 1996, Analytical chemistry.
[4] N. M. Faber,et al. The price paid for the second‐order advantage when using the generalized rank annihilation method (GRAM) , 2001 .
[5] F. Xavier Rius,et al. Limit of detection estimator for second-order bilinear calibration , 2002 .
[6] Alejandro C Olivieri,et al. Computing sensitivity and selectivity in parallel factor analysis and related multiway techniques: the need for further developments in net analyte signal theory. , 2005, Analytical chemistry.
[7] A. Olivieri. Sample‐specific standard prediction errors in three‐way parallel factor analysis (PARAFAC) exploiting the second‐order advantage , 2004 .
[8] Alejandro C. Olivieri,et al. A simple approach to uncertainty propagation in preprocessed multivariate calibration , 2002 .
[9] B. Efron,et al. A Leisurely Look at the Bootstrap, the Jackknife, and , 1983 .
[10] Rasmus Bro,et al. Jack-knife technique for outlier detection and estimation of standard errors in PARAFAC models , 2003 .
[11] R. Tauler. Multivariate curve resolution applied to second order data , 1995 .
[12] Rolf Sundberg,et al. Precision of prediction in second‐order calibration, with focus on bilinear regression methods , 2002 .
[13] Gary D. Christian,et al. Application of the method of rank annihilation to fluorescent multicomponent mixtures of polynuclear aromatic hydrocarbons , 1980 .
[14] R. Bro. PARAFAC. Tutorial and applications , 1997 .
[15] F. Xavier Rius,et al. Estimating uncertainties of analytical results using information from the validation process , 1999 .
[16] Joseph P. Romano,et al. Bootstrap technology and applications , 1992 .
[17] Rolf Sundberg,et al. Second-order calibration: bilinear least squares regression and a simple alternative , 1998 .
[18] G. M. Escandar,et al. Spectrofluorimetric study of the beta-cyclodextrin-ibuprofen complex and determination of ibuprofen in pharmaceutical preparations and serum. , 2003, Talanta.
[19] G. M. Escandar,et al. First- and second-order multivariate calibration applied to biological samples: determination of anti-inflammatories in serum and urine , 2002, Analytical and bioanalytical chemistry.
[20] N. M. Faber,et al. Uncertainty estimation for multivariate regression coefficients , 2002 .
[21] Lloyd A. Currie,et al. Nomenclature in evaluation of analytical methods including detection and quantification capabilities1: (IUPAC Recommendations 1995) , 1999 .
[22] A. Lorber. Error propagation and figures of merit for quantification by solving matrix equations , 1986 .
[23] Rasmus Bro,et al. Standard error of prediction for multiway PLS 1 : background and a simulation study , 2002 .
[24] B. Kowalski,et al. Advances in second‐order calibration , 1993 .
[25] Bruce R. Kowalski,et al. Propagation of measurement errors for the validation of predictions obtained by principal component regression and partial least squares , 1997 .
[26] S. Wold,et al. Multi‐way principal components‐and PLS‐analysis , 1987 .
[27] Ernest R. Davidson,et al. Three-dimensional rank annihilation for multi-component determinations , 1983 .
[28] S. Wold,et al. Residual bilinearization. Part 1: Theory and algorithms , 1990 .
[29] Nikos D. Sidiropoulos,et al. Cramer-Rao lower bounds for low-rank decomposition of multidimensional arrays , 2001, IEEE Trans. Signal Process..
[30] N. M. Faber,et al. Second-order bilinear calibration : the effects of vectorising the data matrices of the calibration set , 2002 .
[31] R. Boqué,et al. Iteratively reweighted generalized rank annihilation method 2. Least squares property and variance expressions , 2001 .
[32] Nicolaas M. Faber,et al. Iteratively reweighted generalized rank annihilation method: 1. Improved handling of prediction bias , 2001 .
[33] Alejandro C Olivieri,et al. New Robust Bilinear Least Squares Method for the Analysis of Spectral-pH Matrix Data , 2005, Applied spectroscopy.
[34] Alejandro C. Olivieri,et al. Standard error of prediction in parallel factor analysis of three-way data , 2004 .
[35] H. R. Keller,et al. Assessment of the Quality of Latent Variable Calibrations Based on Monte Carlo Simulations , 1994 .
[36] Gerrit Kateman,et al. Generalized rank annihilation method. I: Derivation of eigenvalue problems , 1994 .
[37] Avraham Lorber,et al. Analytical figures of merit for tensorial calibration , 1997 .
[38] R. Bro. Multiway calibration. Multilinear PLS , 1996 .