Direct Trajectory Optimization Using a Variable Low-Order Adaptive Pseudospectral Method
暂无分享,去创建一个
[1] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[2] Arthur E. Bryson,et al. Energy-state approximation in performance optimization of supersonic aircraft , 1969 .
[3] I. Babuska,et al. Theh,p andh-p versions of the finite element method in 1 dimension , 1986 .
[4] I. Babuska,et al. The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .
[5] I. Babuska,et al. The h , p and h-p versions of the finite element methods in 1 dimension . Part III. The adaptive h-p version. , 1986 .
[6] Anil V. Rao,et al. Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .
[7] J. E. Cuthrell,et al. On the optimization of differential-algebraic process systems , 1987 .
[8] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[9] J. E. Cuthrell,et al. Simultaneous optimization and solution methods for batch reactor control profiles , 1989 .
[10] Josef Stoer,et al. Numerische Mathematik 1 , 1989 .
[11] John H. Argyris,et al. Computer Methods in Applied Mechanics and Engineering , 1990 .
[12] Ivo Babuška,et al. The p - and h-p version of the finite element method, an overview , 1990 .
[13] Ivo Babuska,et al. The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..
[14] Gamal N. Elnagar,et al. The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..
[15] Bengt Fornberg,et al. A practical guide to pseudospectral methods: Introduction , 1996 .
[16] Hans Seywald,et al. Finite difference scheme for automatic costate calculation , 1996 .
[17] Gamal N. Elnagar,et al. Short communication: A collocation-type method for linear quadratic optimal control problems , 1997 .
[18] J. Betts,et al. MESH REFINEMENT IN DIRECT TRANSCRIPTION METHODS FOR OPTIMAL CONTROL , 1998 .
[19] I. Michael Ross,et al. Costate Estimation by a Legendre Pseudospectral Method , 1998 .
[20] Jean-Paul Laumond,et al. Robot Motion Planning and Control , 1998 .
[21] G. Karniadakis,et al. Spectral/hp Element Methods for CFD , 1999 .
[22] I. Michael Ross,et al. Direct trajectory optimization by a Chebyshev pseudospectral method , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).
[23] Anil V. Rao. Application of a Dichotomic Basis Method to Performance Optimization of Supersonic Aircraft , 2000 .
[24] Michael A. Saunders,et al. SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..
[25] I. Michael Ross,et al. Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems , 2005 .
[26] David Benson,et al. A Gauss pseudospectral transcription for optimal control , 2005 .
[27] Anil V. Rao,et al. Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .
[28] Wilhelm Heinrichs. An adaptive spectral least-squares scheme for the Burgers equation , 2007, Numerical Algorithms.
[29] Lorenz T. Biegler,et al. Convergence rates for direct transcription of optimal control problems using collocation at Radau points , 2008, Comput. Optim. Appl..
[30] P. Tsiotras,et al. Trajectory Optimization Using Multiresolution Techniques , 2008 .
[31] Carlos A. Dorao,et al. hp-adaptive least squares spectral element method for population balance equations , 2008 .
[32] Marc Gerritsma,et al. hp-Adaptive least squares spectral element method for hyperbolic partial differential equations , 2008 .
[33] John T. Betts,et al. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .
[34] Carlos A. Dorao,et al. Hp-Adaptive spectral element solver for reactor modeling , 2009 .
[35] P. Tsiotras,et al. Mesh Refinement Using Density Function for Solving Optimal Control Problems , 2009 .
[36] Anil V. Rao,et al. Algorithm 902: GPOPS, A MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral method , 2010, TOMS.
[37] William W. Hager,et al. A unified framework for the numerical solution of optimal control problems using pseudospectral methods , 2010, Autom..
[38] William W. Hager,et al. Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method , 2011, Comput. Optim. Appl..
[39] W. Hager,et al. An hp‐adaptive pseudospectral method for solving optimal control problems , 2011 .
[40] Anil V. Rao,et al. Costate Estimation Using Multiple-Interval Pseudospectral Methods , 2011 .
[41] Anil V. Rao,et al. Costate Estimation Using Multiple-Interval Pseudospectral Methods , 2011 .
[42] William W. Hager,et al. Convergence of a Gauss Pseudospectral Method for Optimal Control , 2012 .
[43] Wenhu Wang,et al. Abort Trajectory Optimization Using an hp-Adaptive Pseudospectral Method , 2012, 2012 Fifth International Symposium on Computational Intelligence and Design.
[44] Weimin Han,et al. Convergence of the forward-backward sweep method in optimal control , 2012, Comput. Optim. Appl..
[45] Lincheng Shen,et al. An Integrated Multicriterion hp-Adaptive Pseudospectral Method for Direct Optimal Control Problems Solving , 2012 .
[46] Ming Zhu,et al. Direct trajectory optimization based on a mapped Chebyshev pseudospectral method , 2013 .