Direct Trajectory Optimization Using a Variable Low-Order Adaptive Pseudospectral Method

A variable-order adaptive pseudospectral method is presented for solving optimal control problems. The method developed in this paper adjusts both themesh spacing and the degree of the polynomial on eachmesh interval until a specified error tolerance is satisfied. In regions of relatively high curvature, convergence is achieved by refining the mesh, while in regions of relatively low curvature, convergence is achieved by increasing the degree of the polynomial. An efficient iterativemethod is then described for accurately solving a general nonlinear optimal control problem. Using four examples, the adaptive pseudospectral method described in this paper is shown to be more efficient than either a global pseudospectral method or a fixed-order method.

[1]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[2]  Arthur E. Bryson,et al.  Energy-state approximation in performance optimization of supersonic aircraft , 1969 .

[3]  I. Babuska,et al.  Theh,p andh-p versions of the finite element method in 1 dimension , 1986 .

[4]  I. Babuska,et al.  The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .

[5]  I. Babuska,et al.  The h , p and h-p versions of the finite element methods in 1 dimension . Part III. The adaptive h-p version. , 1986 .

[6]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[7]  J. E. Cuthrell,et al.  On the optimization of differential-algebraic process systems , 1987 .

[8]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[9]  J. E. Cuthrell,et al.  Simultaneous optimization and solution methods for batch reactor control profiles , 1989 .

[10]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[11]  John H. Argyris,et al.  Computer Methods in Applied Mechanics and Engineering , 1990 .

[12]  Ivo Babuška,et al.  The p - and h-p version of the finite element method, an overview , 1990 .

[13]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[14]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[15]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[16]  Hans Seywald,et al.  Finite difference scheme for automatic costate calculation , 1996 .

[17]  Gamal N. Elnagar,et al.  Short communication: A collocation-type method for linear quadratic optimal control problems , 1997 .

[18]  J. Betts,et al.  MESH REFINEMENT IN DIRECT TRANSCRIPTION METHODS FOR OPTIMAL CONTROL , 1998 .

[19]  I. Michael Ross,et al.  Costate Estimation by a Legendre Pseudospectral Method , 1998 .

[20]  Jean-Paul Laumond,et al.  Robot Motion Planning and Control , 1998 .

[21]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[22]  I. Michael Ross,et al.  Direct trajectory optimization by a Chebyshev pseudospectral method , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[23]  Anil V. Rao Application of a Dichotomic Basis Method to Performance Optimization of Supersonic Aircraft , 2000 .

[24]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[25]  I. Michael Ross,et al.  Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems , 2005 .

[26]  David Benson,et al.  A Gauss pseudospectral transcription for optimal control , 2005 .

[27]  Anil V. Rao,et al.  Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .

[28]  Wilhelm Heinrichs An adaptive spectral least-squares scheme for the Burgers equation , 2007, Numerical Algorithms.

[29]  Lorenz T. Biegler,et al.  Convergence rates for direct transcription of optimal control problems using collocation at Radau points , 2008, Comput. Optim. Appl..

[30]  P. Tsiotras,et al.  Trajectory Optimization Using Multiresolution Techniques , 2008 .

[31]  Carlos A. Dorao,et al.  hp-adaptive least squares spectral element method for population balance equations , 2008 .

[32]  Marc Gerritsma,et al.  hp-Adaptive least squares spectral element method for hyperbolic partial differential equations , 2008 .

[33]  John T. Betts,et al.  Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .

[34]  Carlos A. Dorao,et al.  Hp-Adaptive spectral element solver for reactor modeling , 2009 .

[35]  P. Tsiotras,et al.  Mesh Refinement Using Density Function for Solving Optimal Control Problems , 2009 .

[36]  Anil V. Rao,et al.  Algorithm 902: GPOPS, A MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral method , 2010, TOMS.

[37]  William W. Hager,et al.  A unified framework for the numerical solution of optimal control problems using pseudospectral methods , 2010, Autom..

[38]  William W. Hager,et al.  Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method , 2011, Comput. Optim. Appl..

[39]  W. Hager,et al.  An hp‐adaptive pseudospectral method for solving optimal control problems , 2011 .

[40]  Anil V. Rao,et al.  Costate Estimation Using Multiple-Interval Pseudospectral Methods , 2011 .

[41]  Anil V. Rao,et al.  Costate Estimation Using Multiple-Interval Pseudospectral Methods , 2011 .

[42]  William W. Hager,et al.  Convergence of a Gauss Pseudospectral Method for Optimal Control , 2012 .

[43]  Wenhu Wang,et al.  Abort Trajectory Optimization Using an hp-Adaptive Pseudospectral Method , 2012, 2012 Fifth International Symposium on Computational Intelligence and Design.

[44]  Weimin Han,et al.  Convergence of the forward-backward sweep method in optimal control , 2012, Comput. Optim. Appl..

[45]  Lincheng Shen,et al.  An Integrated Multicriterion hp-Adaptive Pseudospectral Method for Direct Optimal Control Problems Solving , 2012 .

[46]  Ming Zhu,et al.  Direct trajectory optimization based on a mapped Chebyshev pseudospectral method , 2013 .