In situ, steerable, hardware-independent and data-structure agnostic visualization with ISAAC

The computation power of supercomputers grows faster than the bandwidth of their storage and network. Especially applications using hardware accelerators like Nvidia GPUs cannot save enough data to be analyzed in a later step. There is a high risk of loosing important scientific information. We introduce the in situ template library ISAAC which enables arbitrary applications like scientific simulations to live visualize their data without the need of deep copy operations or data transformation using the very same compute node and hardware accelerator the data is already residing on. Arbitrary meta data can be added to the renderings and user defined steering commands can be asynchronously sent back to the running application. Using a aggregating server, ISAAC streams the interactive visualization video and enables user to access their applications from everywhere.

[1]  Liu Ning,et al.  The design and implement of ultra-scale data parallel in-situ visualization system , 2010, 2010 International Conference on Audio, Language and Image Processing.

[2]  Kwan-Liu Ma In situ visualization at extreme scale: challenges and opportunities. , 2009, IEEE computer graphics and applications.

[3]  James P. Ahrens,et al.  In‐situ Sampling of a Large‐Scale Particle Simulation for Interactive Visualization and Analysis , 2011, Comput. Graph. Forum.

[4]  Guido Juckeland,et al.  Performance-Portable Many-Core Plasma Simulations: Porting PIConGPU to OpenPower and Beyond , 2016, ISC Workshops.

[5]  Fan Zhang,et al.  Combining in-situ and in-transit processing to enable extreme-scale scientific analysis , 2012, 2012 International Conference for High Performance Computing, Networking, Storage and Analysis.

[6]  Kwan-Liu Ma,et al.  Dax Toolkit: A proposed framework for data analysis and visualization at Extreme Scale , 2011, 2011 IEEE Symposium on Large Data Analysis and Visualization.

[7]  Peter Lindstrom,et al.  Fixed-Rate Compressed Floating-Point Arrays , 2014, IEEE Transactions on Visualization and Computer Graphics.

[8]  Tim Bray,et al.  The JavaScript Object Notation (JSON) Data Interchange Format , 2014, RFC.

[9]  James P. Ahrens,et al.  An Image-Based Approach to Extreme Scale in Situ Visualization and Analysis , 2014, SC14: International Conference for High Performance Computing, Networking, Storage and Analysis.

[10]  Hongfeng Yu,et al.  A Study of In-Situ Visualization for Petascale Combustion Simulations , 2009 .

[11]  Jeremy S. Meredith,et al.  Parallel in situ coupling of simulation with a fully featured visualization system , 2011, EGPGV '11.

[12]  Kwan-Liu Ma,et al.  In-situ processing and visualization for ultrascale simulations , 2007 .

[13]  James P. Ahrens,et al.  Remote large data visualization in the paraview framework , 2006, EGPGV '06.

[14]  Kenneth Moreland,et al.  Sandia National Laboratories , 2000 .

[15]  H Burau,et al.  PIConGPU: A Fully Relativistic Particle-in-Cell Code for a GPU Cluster , 2010, IEEE Transactions on Plasma Science.

[16]  Martin Isenburg,et al.  Fast and Efficient Compression of Floating-Point Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[17]  Kwan-Liu Ma,et al.  Parallel volume rendering using binary-swap compositing , 1994, IEEE Computer Graphics and Applications.

[18]  Guido Juckeland,et al.  Radiative signature of the relativistic Kelvin-Helmholtz Instability , 2013, 2013 SC - International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[19]  T. Tu,et al.  From Mesh Generation to Scientific Visualization: An End-to-End Approach to Parallel Supercomputing , 2006, ACM/IEEE SC 2006 Conference (SC'06).

[20]  R. Hagan,et al.  Multi-GPU Load Balancing for In-situ Visualization , 2011 .

[21]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[22]  Hank Childs,et al.  VisIt: An End-User Tool for Visualizing and Analyzing Very Large Data , 2011 .

[23]  John Biddiscombe,et al.  Parallel computational steering and analysis for HPC applications using a paraview interface and the HDF5 DSM virtual file driver , 2011, EGPGV '11.

[24]  Tim Bray,et al.  Internet Engineering Task Force (ietf) the Javascript Object Notation (json) Data Interchange Format , 2022 .

[25]  Guido Juckeland,et al.  Alpaka -- An Abstraction Library for Parallel Kernel Acceleration , 2016, 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).

[26]  David R. O'Hallaron,et al.  Remote runtime steering of integrated terascale simulation and visualization , 2006, SC.

[27]  Klaus Schulten,et al.  GPU-accelerated molecular visualization on petascale supercomputing platforms , 2013, UltraVis@SC.

[28]  Akira Kageyama,et al.  An approach to exascale visualization: Interactive viewing of in-situ visualization , 2013, Comput. Phys. Commun..

[29]  Thomas Ertl,et al.  On in-situ visualization for strongly coupled partitioned fluid-structure interaction , 2015 .

[30]  Robert Latham,et al.  Compressing the Incompressible with ISABELA: In-situ Reduction of Spatio-temporal Data , 2011, Euro-Par.