The Star Formation Rate and Dense Molecular Gas in Galaxies

HCN luminosity is a tracer of dense molecular gas, n(H2) ≳ 3 × 104 cm-3, associated with star-forming giant molecular cloud (GMC) cores. We present the results and analysis of our survey of HCN emission from 65 infrared galaxies, including nine ultraluminous infrared galaxies (ULIGs, LIR ≳ 1012 L☉), 22 luminous infrared galaxies (LIGs, 1011 L☉ < LIR ≲ 1012 L☉), and 34 normal spiral galaxies with lower IR luminosity (most are large spiral galaxies). We have measured the global HCN line luminosity, and the observations are reported in Paper I. This paper analyzes the relationships between the total far-IR luminosity (a tracer of the star formation rate), the global HCN line luminosity (a measure of the total dense molecular gas content), and the CO luminosity (a measure of the total molecular content). We find a tight linear correlation between the IR and HCN luminosities LIR and LHCN (in the log-log plot) with a correlation coefficient R = 0.94, and an almost constant average ratio LIR/LHCN = 900 L☉ (K km s-1 pc2)-1. The IR-HCN linear correlation is valid over 3 orders of magnitude including ULIGs, the most luminous objects in the local universe. The direct consequence of the linear IR-HCN correlation is that the star formation law in terms of dense molecular gas content has a power-law index of 1.0. The global star formation rate is linearly proportional to the mass of dense molecular gas in normal spiral galaxies, LIGs, and ULIGs. This is strong evidence in favor of star formation as the power source in ultraluminous galaxies since the star formation in these galaxies appears to be normal and expected given their high mass of dense star-forming molecular gas. The HCN-CO correlation is also much tighter than the IR-CO correlation. We suggest that the nonlinear correlation between LIR and LCO may be a consequence of the stronger and perhaps more physical correlations between LIR and LHCN and between LHCN and LCO. Thus, the star formation rate indicated by LIR depends on the amount of dense molecular gas traced by HCN emission, not the total molecular gas traced by CO emission. One of the main arguments in favor of an active galactic nucleus (AGN) as the power source in ULIGs is the anomalously high ratio LIR/LCO or LIR/M(H2) or high star formation rate per M☉ of gas, compared with that from normal spiral galaxies. This has been interpreted as indicating that a dust-enshrouded AGN is required to produce the very high luminosity. Viewed in terms of the dense gas mass the situation is completely different. The ratio LIR/LHCN or LIR/Mdense, a measure of the star formation rate per solar mass of dense gas, is essentially the same in all galaxies including ULIGs. The ratio LIR/Mdense is virtually independent of galaxy luminosity and on average LIR/Mdense ≈ 90L☉/M☉, about the same as in GMC cores but much higher than in GMCs. We find that ULIGs simply have a large quantity of dense molecular gas and thus produce a prodigious starburst that heats the dust, produces the IR, and blocks all or most optical radiation. The HCN global luminosity may be used as an indicator of the star formation rate in high-redshift objects including hyperluminous galaxies. The HCN/CO ratio is an indicator of the dense molecular gas fraction and gauges the globally averaged molecular gas density. We find that the HCN/CO ratio is a powerful starburst indicator. All galaxies in our sample with a high dense gas mass fraction indicated by LHCN/LCO > 0.06 are LIGs or ULIGs. Normal spirals all have similar and low dense gas fractions LHCN/LCO = 0.02-0.05. The global star formation efficiency depends on the fraction of the molecular gas in a dense phase.

[1]  P. Solomon,et al.  HCN Survey of Normal Spiral, Infrared-luminous, and Ultraluminous Galaxies , 2003, astro-ph/0310341.

[2]  Pasadena,et al.  Far Infrared mapping of NGC 891 , 2003, astro-ph/0310266.

[3]  B. Draine,et al.  The cold universe , 2004 .

[4]  C. Carilli,et al.  The essential signature of a massive starburst in a distant quasar , 2003, Nature.

[5]  F. Bertoldi,et al.  Interferometric Observations of Powerful CO Emission from Three Submillimeter Galaxies at z = 2.39, 2.51, and 3.35 , 2003 .

[6]  H. Falcke,et al.  The AGN content of ultraluminous IR galaxies: High resolution VLA imaging of the IRAS 1 Jy ULIRG sample , 2003, astro-ph/0309298.

[7]  R. Ivison,et al.  Gas and Dust in the Extremely Red Object ERO J164502+4626.4 , 2003, astro-ph/0309213.

[8]  G. Palumbo,et al.  An XMM-Newton hard X-ray survey of ultraluminous infrared galaxies , 2003 .

[9]  P.cox,et al.  Interferometric Observations of Powerful CO Emission from the three Submillimeter Galaxies at z=2.30, 2.51 and 3.35 , 2003, astro-ph/0307310.

[10]  M. Wolfire,et al.  The [C II] 158 Micron Line Deficit in Ultraluminous Infrared Galaxies Revisited , 2003, astro-ph/0305520.

[11]  I. Smail,et al.  A median redshift of 2.4 for galaxies bright at submillimetre wavelengths , 2003, Nature.

[12]  K. Kohno,et al.  Multi-Line Observations of Molecular Gas in the Central Region of the Low Star-Formation Efficiency “Starburst” Galaxy NGC 4527 , 2003 .

[13]  T. U. O. Tokyo,et al.  Enhanced HCN (1-0) Emission in the Type-1 Seyfert Galaxy NGC 1097 , 2002, astro-ph/0210579.

[14]  S. Veilleux,et al.  Optical and Near-Infrared Imaging of the IRAS 1 Jy Sample of Ultraluminous Infrared Galaxies. II. The Analysis , 2002, astro-ph/0207373.

[15]  N. Kuno,et al.  Radial Distributions of the HCN/CO Ratio in Nearby CO Bright Galaxies , 2002 .

[16]  S. Djorgovski,et al.  Imaging Low-Order CO Emission from the z = 4.12 Quasi-Stellar Object PSS J2322+1944 , 2002, astro-ph/0204253.

[17]  S. Djorgovski,et al.  CO and Dust in PSS 2322+1944 at a redshift of 4.12 , 2002, astro-ph/0203355.

[18]  L. Blitz,et al.  The Relationship between Gas Content and Star Formation in Molecule-rich Spiral Galaxies , 2001, astro-ph/0112204.

[19]  R. McMahon,et al.  The SCUBA Bright Quasar Survey (SBQS): 850-μm observations of the z>≳ 4 sample , 2001, astro-ph/0109438.

[20]  R. G. McMahon,et al.  A 1.2 mm MAMBO/IRAM-30 m survey of dust emission from the highest redshift PSS quasars , 2001, astro-ph/0107005.

[21]  G. Neugebauer,et al.  High-Resolution Mid-Infrared Imaging of Infrared-Luminous Starburst Galaxies , 2001, astro-ph/0106172.

[22]  R. Gruendl,et al.  Gas Distribution and Starburst Activity in the Widely Separated Interacting Galaxy Pair NGC 6670 , 2001, astro-ph/0103280.

[23]  R. Booth,et al.  Global molecular gas properties of Seyfert galaxies ? I. The observational data , 2001 .

[24]  D. Meier,et al.  Molecular Gas and Star Formation in the Nucleus of IC 342: C18O and Millimeter Continuum Imaging , 2001, astro-ph/0101464.

[25]  G. Lewis,et al.  A massive reservoir of low-excitation molecular gas at high redshift , 2001, Nature.

[26]  N. Lu,et al.  Mapping Infrared Enhancements in Closely Interacting Spiral-Spiral Pairs. I. ISO CAM and ISO SWS Observations , 2000, astro-ph/0005025.

[27]  D. Clements,et al.  The SCUBA Local Universe Galaxy Survey — I. First measurements of the submillimetre luminosity and dust mass functions , 2000, astro-ph/0002234.

[28]  M. Rieke,et al.  NICMOS Imaging of Infrared-Luminous Galaxies , 1999, astro-ph/9912246.

[29]  T. Heckman The role of starbursts in the formation of galaxies and active galactic nuclei , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  R. Booth,et al.  Dense molecular gas in Seyfert galaxies , 2000 .

[31]  M. Rowan-Robinson,et al.  Hyperluminous infrared galaxies , 1999 .

[32]  B. Rownd,et al.  The Star Formation Efficiency within Galaxies , 1999 .

[33]  R. Hills,et al.  Dust and gas in luminous infrared galaxies – results from SCUBA observations , 1999, astro-ph/9907035.

[34]  N. Scoville,et al.  High-Resolution CO Observations of Luminous Infrared Galaxies , 1999 .

[35]  N. Evans Physical conditions in regions of star formation , 1999, astro-ph/9905050.

[36]  J. Davies,et al.  200-μm ISO observations of NGC 6946: evidence for an extended distribution of cold dust , 1999 .

[37]  S. Veilleux,et al.  New Results from a Near-Infrared Search for Hidden Broad-Line Regions in Ultraluminous Infrared Galaxies , 1999, astro-ph/9904148.

[38]  J. Young The Efficiency of Star Formation in Galaxies as a Function of Galaxy Size and Environment , 1999 .

[39]  R. Joseph The great debate: Starbusts as the energy source of ultraluminous infrared galaxies , 1999 .

[40]  P. Solomon,et al.  Molecular Gas Depletion and Starbursts in Luminous Infrared Galaxy Mergers , 1998, astro-ph/9812320.

[41]  R. Genzel,et al.  Counterrotating Nuclear Disks in Arp 220 , 1998, astro-ph/9810325.

[42]  R. Neri,et al.  Detection of CO (4-3), CO (9-8), and Dust Emission in the Broad Absorption Line Quasar APM 08279+5255 at a Redshift of 3.9 , 1998, astro-ph/9810111.

[43]  J. Surace,et al.  High-Resolution Tip/Tilt Near-Infrared Imaging of Warm Ultraluminous Infrared Galaxies , 1998, astro-ph/9809184.

[44]  R. Gruendl,et al.  Luminous Infrared Galaxies in a Merging Sequence: ISO Observations , 1999 .

[45]  R. Gruendl,et al.  Mid-Infrared Images of Luminous Infrared Galaxies in a Merging Sequence , 1998, astro-ph/9812476.

[46]  Jonathan Ivor Davies,et al.  Deep Submillimeter Images of NGC 891—Cold Dust at Larger Galactic Radii , 1998 .

[47]  K. Kohno,et al.  Dense Molecular Gas Associated with the Circumnuclear Star-forming Ring in the Barred Spiral Galaxy NGC 6951 , 1998, astro-ph/9808229.

[48]  Cambridge,et al.  Molecular Gas in the z = 2.8 Submillimeter Galaxy SMM 02399–0136 , 1998, The Astrophysical Journal.

[49]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[50]  P. Solomon,et al.  Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies , 1998, astro-ph/9806377.

[51]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[52]  Joseph M. Mazzarella,et al.  HST/WFPC2 Observations of Warm Ultraluminous Infrared Galaxies , 1998 .

[53]  R. Neri,et al.  DUST EMISSION IN THE BAL QUASAR APM 08279 + 5255 AT A REDSHIFT OF 3 . 9 , 1998 .

[54]  D. Kunze,et al.  What Powers Ultraluminous IRAS Galaxies? , 1997, astro-ph/9711255.

[55]  J. Jackson,et al.  The Average Properties of the Dense Molecular Gas in Galaxies , 1997 .

[56]  N. Scoville,et al.  Arcsecond Imaging of CO Emission in the Nucleus of Arp 220 , 1997 .

[57]  P. Solomon,et al.  Molecular Gas in the Spectacular Ring Galaxy NGC 1144 , 1997, astro-ph/9702203.

[58]  R. Genzel,et al.  A High Spatial Resolution Study of the Molecular Gas in NGC 1068 , 1997 .

[59]  Simon J. E. Radford,et al.  Variation of Molecular Line Ratios and Cloud Properties in the Arp 299 Galaxy Merger , 1997, astro-ph/9701005.

[60]  R. Gruendl,et al.  Arp 302: Nonstarburst Luminous Infrared Galaxies , 1996, astro-ph/9611152.

[61]  Simon J. E. Radford,et al.  The Molecular Interstellar Medium in Ultraluminous Infrared Galaxies , 1996, astro-ph/9610166.

[62]  L. Blitz,et al.  Dense Gas in the Milky Way , 1996, astro-ph/9610102.

[63]  L. Blitz,et al.  Synthesis Imaging of Dense Gas in Nearby Galaxies , 1996, astro-ph/9610103.

[64]  R. Plume,et al.  Dense Gas and Star Formation: Characteristics of Cloud Cores Associated with Water Masers , 1996, astro-ph/9609061.

[65]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[66]  Yu Gao DENSE MOLECULAR GAS IN GALAXIES AND THE EVOLUTION OF LUMINOUS INFRARED GALAXIES , 1996 .

[67]  K. Kohno,et al.  Aperture Synthesis CO and HCN Observations of M51: Dense Molecular Disk around a Low-Luminosity Active Galactic Nucleus , 1996 .

[68]  A. Bolatto,et al.  HCN and CO in the Central 630 Parsecs of the Galaxy , 1996 .

[69]  Timothy A. D. Paglione,et al.  The Distribution of the Dense Clouds in the Starburst Nucleus of NGC 253 , 1995 .

[70]  L. Blitz,et al.  High-Resolution Berkeley-Illinois-Maryland Association Observations of CO, HCN, and 13CO in NGC 1068 , 1995 .

[71]  Leo Blitz,et al.  Dense gas in the bulges of external galaxies , 1993 .

[72]  R. Genzel,et al.  The Nature of the dense obscuring material in the nucleus of NGC 1068 , 1993 .

[73]  J. Jackson,et al.  Dense molecular gas toward the nucleus of the Seyfert galaxy NGC 1068 , 1993 .

[74]  C. Telesco,et al.  The genesis of starbursts and infrared emission in the centers of galaxies , 1993 .

[75]  N. Devereux,et al.  THE ORIGIN OF THE FAR-INFRARED LUMINOSITY WITHIN THE SPIRAL GALAXY NGC-6946 (VOL 106, PG 948, 1993) , 1993 .

[76]  R. Hurt,et al.  Aperture synthesis mapping of CO (2-1) in IC 342 , 1993 .

[77]  W. Rice,et al.  An atlas of high-resolution IRAS maps on nearby galaxies , 1993 .

[78]  A survey for extragalactic HCN and HCO , 1992 .

[79]  P. Scowen,et al.  THE ORIGIN OF THE FAR-INFRARED LUMINOSITY WITHIN THE SPIRAL GALAXY-M51 , 1992 .

[80]  Simon J. E. Radford,et al.  Dense Molecular Gas and Starbursts in Ultraluminous Galaxies , 1992 .

[81]  R. Hurt,et al.  (C-13)O in IC 342 - Evidence for a spiral density wave in the nucleus , 1992 .

[82]  T. Thuan,et al.  Compact starbursts in ultraluminous infrared galaxies , 1991 .

[83]  B. Soifer,et al.  Molecular gas in luminous infrared galaxies , 1991 .

[84]  F. Combes,et al.  Dynamics of galaxies and their molecular cloud distributions : proceedings of the 146th Symposium of the International Astronomical Union, held in Paris, France, June 4-9, 1990 , 1991 .

[85]  N. Scoville,et al.  Molecular gas in galaxies , 1991 .

[86]  N. Devereux,et al.  THE ORIGIN OF THE FAR-INFRARED LUMINOSITY FROM SPIRAL GALAXIES , 1990 .

[87]  Simon J. E. Radford,et al.  Dense molecular clouds and the ARP 220 starburst , 1990 .

[88]  G. Neugebauer,et al.  Continuum energy distribution of quasars: Shapes and origins , 1989 .

[89]  G. Neugebauer,et al.  The IRAS Bright Galaxy Sample. IV. Complete IRAS observations , 1989 .

[90]  J. Kenney,et al.  Global properties of infrared bright galaxies , 1989 .

[91]  L. Fullmer,et al.  Cataloged galaxies and quasars observed in the IRAS survey , 1989 .

[92]  P. Solomon,et al.  Star-formation rates, molecular clouds, and the origin of the far-infrared luminosity of isolated and interacting galaxies , 1988 .

[93]  P. Solomon,et al.  Star formation rates and the far-infrared luminosity of Galactic molecular clouds , 1988 .

[94]  G. Neugebauer,et al.  A catalog of IRAS observations of large optical galaxies , 1988 .

[95]  J. Stutzki,et al.  First Detection of HCN J = 9--8 (797 GHz) Line Emission: Very High Densities in the Orion Core , 1988 .

[96]  G. Neugebauer,et al.  Ultraluminous infrared galaxies and the origin of quasars , 1988 .

[97]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[98]  F. Schloerb,et al.  CO observations of infrared bright galaxies - The efficiency of star formation , 1986 .

[99]  P. Ho,et al.  VLA observations of massive star formation in spiral nuclei , 1983 .

[100]  R. Gehrz,et al.  Star bursts and the extraordinary galaxy NGC 3690 , 1983 .

[101]  Judith S. Young,et al.  The molecular gas distribution in M51 , 1983 .

[102]  W. B. Burton The Large-Scale Characteristics of the Galaxy , 1979 .

[103]  V. Clube Large-scale characteristics of the Galaxy , 1978, Nature.

[104]  M. Schmidt The Rate of Star Formation , 1959 .