EIT-kit: An Electrical Impedance Tomography Toolkit for Health and Motion Sensing

In this paper, we propose EIT-kit, an electrical impedance tomography toolkit for designing and fabricating health and motion sensing devices. EIT-kit contains (1) an extension to a 3D editor for personalizing the form factor of electrode arrays and electrode distribution, (2) a customized EIT sensing motherboard for performing the measurements, (3) a microcontroller library that automates signal calibration and facilitates data collection, and (4) an image reconstruction library for mobile devices for interpolating and visualizing the measured data. Together, these EIT-kit components allow for applications that require 2- or 4-terminal setups, up to 64 electrodes, and single or multiple (up to four) electrode arrays simultaneously. We motivate the design of each component of EIT-kit with a formative study, and conduct a technical evaluation of the data fidelity of our EIT measurements. We demonstrate the design space that EIT-kit enables by showing various applications in health as well as motion sensing and control.

[1]  E. J. Woo,et al.  Skin impedance measurements using simple and compound electrodes , 2006, Medical and Biological Engineering and Computing.

[2]  Xinfu Liu,et al.  The Research on Non-destructive Testing Method of Sheet Resistance in Micro Area of Silicon Wafer Based on EIT Technology , 2008, 2008 International Conference on Intelligent Information Hiding and Multimedia Signal Processing.

[3]  Yasuo Kuniyoshi,et al.  A deformable and deformation sensitive tactile distribution sensor , 2007, 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[4]  Ryan J. Halter,et al.  A wearable system that knows who wears it , 2014, MobiSys.

[5]  Saul Greenberg,et al.  Phidgets: easy development of physical interfaces through physical widgets , 2001, UIST '01.

[6]  Junying Xia,et al.  pyEIT: A python based framework for Electrical Impedance Tomography , 2018, SoftwareX.

[7]  Yang Zhang,et al.  Tomo: Wearable, Low-Cost Electrical Impedance Tomography for Hand Gesture Recognition , 2015, UIST.

[8]  Sue Sentance,et al.  .NET gadgeteer: a new platform for K-12 computer science education , 2013, SIGCSE '13.

[9]  Weiyi Ning,et al.  Transition to Automated: The Interaction of Activating the In-vehicle Automated Driving System , 2019, HCI.

[10]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[11]  Richard H. Bayford,et al.  Towards a High Accuracy Wearable Hand Gesture Recognition System Using EIT , 2018, 2018 IEEE International Symposium on Circuits and Systems (ISCAS).

[12]  Xiao Liu,et al.  A Human–Machine Interface Using Electrical Impedance Tomography for Hand Prosthesis Control , 2018, IEEE Transactions on Biomedical Circuits and Systems.

[13]  Sang Ho Yoon,et al.  iSoft: A Customizable Soft Sensor with Real-time Continuous Contact and Stretching Sensing , 2017, UIST.

[14]  Ivan Poupyrev,et al.  Touché: enhancing touch interaction on humans, screens, liquids, and everyday objects , 2012, CHI.

[15]  Zhenyu Guo,et al.  A review of electrical impedance techniques for breast cancer detection. , 2003, Medical engineering & physics.

[16]  Nicolai Marquardt,et al.  WatchConnect: A Toolkit for Prototyping Smartwatch-Centric Cross-Device Applications , 2015, CHI.

[17]  Hans-Werner Gellersen,et al.  The VoodooIO gaming kit: a real-time adaptable gaming controller , 2007, CIE.

[18]  Björn Hartmann,et al.  Midas: fabricating custom capacitive touch sensors to prototype interactive objects , 2012, UIST '12.

[19]  Patrick Baudisch,et al.  Personal Fabrication , 2017, Found. Trends Hum. Comput. Interact..

[20]  R H Bayford,et al.  Multi-frequency electrical impedance tomography (EIT) of the adult human head: initial findings in brain tumours, arteriovenous malformations and chronic stroke, development of an analysis method and calibration , 2006, Physiological measurement.

[21]  Joseph A. Paradiso,et al.  Multi-Touch Kit: A Do-It-Yourself Technique for Capacitive Multi-Touch Sensing Using a Commodity Microcontroller , 2019, UIST.

[22]  Alex Olwal,et al.  Zensei: Embedded, Multi-electrode Bioimpedance Sensing for Implicit, Ubiquitous User Recognition , 2017, CHI.

[23]  Xiaojie Wang,et al.  An Optimal Electrical Impedance Tomography Drive Pattern for Human-Computer Interaction Applications , 2020, IEEE Transactions on Biomedical Circuits and Systems.

[24]  Y. Kato,et al.  Tactile Sensor without Wire and Sensing Element in the Tactile Region Based on EIT Method , 2007, 2007 IEEE Sensors.

[25]  R. Harikumar,et al.  Electrical Impedance Tomography (EIT) and Its Medical Applications: A Review , 2013 .

[26]  K. A. Dines,et al.  Analysis of electrical conductivity imaging , 1981 .

[27]  Saul Greenberg,et al.  Evaluation Strategies for HCI Toolkit Research , 2018, CHI.

[28]  C Blochet,et al.  In vivo bioimpedance measurement of healthy and ischaemic rat brain: implications for stroke imaging using electrical impedance tomography , 2015, Physiological measurement.

[29]  Michal Prauzek,et al.  A hybrid device for electrical impedance tomography and bioelectrical impedance spectroscopy measurement , 2014, 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE).

[30]  William R B Lionheart,et al.  GREIT: a unified approach to 2D linear EIT reconstruction of lung images , 2009, Physiological measurement.

[31]  Xin Wen,et al.  CurveBoards: Integrating Breadboards into Physical Objects to Prototype Function in the Context of Form , 2020, CHI.

[32]  Yang Zhang,et al.  Advancing Hand Gesture Recognition with High Resolution Electrical Impedance Tomography , 2016, UIST.

[33]  Gierad Laput,et al.  Electrick: Low-Cost Touch Sensing Using Electric Field Tomography , 2017, CHI.

[34]  William R B Lionheart,et al.  Uses and abuses of EIDORS: an extensible software base for EIT , 2006, Physiological measurement.

[35]  Andy Adler,et al.  The impact of electrode area, contact impedance and boundary shape on EIT images , 2011, Physiological measurement.

[36]  Tushar Kanti Bera,et al.  Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review , 2014, Journal of medical engineering.

[37]  J. Arnold Electrical impedance tomography: on the path to the Holy Grail. , 2004, Critical care medicine.

[38]  Alex Fridman,et al.  What Can Be Predicted from Six Seconds of Driver Glances? , 2016, CHI.

[39]  Saul Greenberg,et al.  Toolkits and interface creativity , 2007, Multimedia Tools and Applications.