Architecture of the Mouse Brain Synaptome

[1]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[2]  P. Andersen,et al.  Specific long-lasting potentiation of synaptic transmission in hippocampal slices , 1977, Nature.

[3]  P. Andersen,et al.  A comparison of distal and proximal dendritic synapses on CA1 pyramids in guinea‐pig hippocampal slices in vitro , 1980, The Journal of physiology.

[4]  Andrew P. Witkin,et al.  Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  M. Monk,et al.  HPRT-deficient (Lesch–Nyhan) mouse embryos derived from germline colonization by cultured cells , 1987, Nature.

[6]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[7]  L. Abbott,et al.  A Quantitative Description of Short-Term Plasticity at Excitatory Synapses in Layer 2/3 of Rat Primary Visual Cortex , 1997, The Journal of Neuroscience.

[8]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[9]  R. Morris,et al.  Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein , 1998, Nature.

[10]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[11]  Petter Laake,et al.  Different modes of expression of AMPA and NMDA receptors in hippocampal synapses , 1999, Nature Neuroscience.

[12]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[13]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  M. Fukaya,et al.  Improved immunohistochemical detection of postsynaptically located PSD‐95/SAP90 protein family by protease section pretreatment: A study in the adult mouse brain , 2000, The Journal of comparative neurology.

[15]  S. Grant,et al.  Proteomic analysis of NMDA receptor–adhesion protein signaling complexes , 2000, Nature Neuroscience.

[16]  D. Court,et al.  A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. , 2001, Genomics.

[17]  S. Grant,et al.  Isolation of 2000‐kDa complexes of N‐methyl‐d‐aspartate receptor and postsynaptic density 95 from mouse brain , 2001, Journal of neurochemistry.

[18]  D. Bredt,et al.  PSD-93 Knock-Out Mice Reveal That Neuronal MAGUKs Are Not Required for Development or Function of Parallel Fiber Synapses in Cerebellum , 2001, The Journal of Neuroscience.

[19]  L. Swanson Brain Architecture: Understanding the Basic Plan , 2002 .

[20]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[21]  M. Bear,et al.  Ubiquitination Regulates PSD-95 Degradation and AMPA Receptor Surface Expression , 2003, Neuron.

[22]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[23]  Steven P Gygi,et al.  Semiquantitative Proteomic Analysis of Rat Forebrain Postsynaptic Density Fractions by Mass Spectrometry* , 2004, Journal of Biological Chemistry.

[24]  D. Nicholson,et al.  Differences in the expression of AMPA and NMDA receptors between axospinous perforated and nonperforated synapses are related to the configuration and size of postsynaptic densities , 2004, The Journal of comparative neurology.

[25]  Takashi Yamauchi,et al.  Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromatography‐tandem mass spectrometry , 2003, Journal of neurochemistry.

[26]  J. Gécz,et al.  Mutations in the DLG3 gene cause nonsyndromic X-linked mental retardation. , 2004, American journal of human genetics.

[27]  L. Tsai,et al.  Cyclin-Dependent Kinase 5 Phosphorylates the N-Terminal Domain of the Postsynaptic Density Protein PSD-95 in Neurons , 2004, The Journal of Neuroscience.

[28]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[29]  Yan Zhang,et al.  On the Euclidean distance of images , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Iain D G Campuzano,et al.  Proteomic Analysis of in Vivo Phosphorylated Synaptic Proteins* , 2005, Journal of Biological Chemistry.

[31]  Paramvir S. Dehal,et al.  Two Rounds of Whole Genome Duplication in the Ancestral Vertebrate , 2005, PLoS biology.

[32]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[33]  S. Grant,et al.  Recording long-term potentiation of synaptic transmission by three-dimensional multi-electrode arrays , 2006, BMC Neuroscience.

[34]  R. Huganir,et al.  Synapse-specific regulation of AMPA receptor function by PSD-95 , 2006, Proceedings of the National Academy of Sciences.

[35]  S. Grant,et al.  Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome , 2006, Journal of neurochemistry.

[36]  M. Jackson,et al.  Heterogeneous spatial patterns of long‐term potentiation in rat hippocampal slices , 2006, The Journal of physiology.

[37]  Lars Funke,et al.  Synapse-Specific and Developmentally Regulated Targeting of AMPA Receptors by a Family of MAGUK Scaffolding Proteins , 2006, Neuron.

[38]  Richard D Emes,et al.  Evolution of NMDA receptor cytoplasmic interaction domains: implications for organisation of synaptic signalling complexes , 2008, BMC Neuroscience.

[39]  J. Ainge,et al.  Synapse-Associated Protein 102/dlgh3 Couples the NMDA Receptor to Specific Plasticity Pathways and Learning Strategies , 2007, The Journal of Neuroscience.

[40]  S. Grant Toward a molecular catalogue of synapses , 2007, Brain Research Reviews.

[41]  Richard D Emes,et al.  Evolutionary expansion and anatomical specialization of synapse proteome complexity , 2008, Nature Neuroscience.

[42]  Edward G Jones,et al.  Vesicular glutamate transporters define two sets of glutamatergic afferents to the somatosensory thalamus and two thalamocortical projections in the mouse , 2008, The Journal of comparative neurology.

[43]  Sean M Montgomery,et al.  Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm , 2008, Neuron.

[44]  Hong Wei Dong,et al.  Allen reference atlas : a digital color brain atlas of the C57Black/6J male mouse , 2008 .

[45]  Peter R. Baker,et al.  Quantitative Analysis of Synaptic Phosphorylation and Protein Expression*S , 2008, Molecular & Cellular Proteomics.

[46]  Robert C. Malenka,et al.  Molecular Dissociation of the Role of PSD-95 in Regulating Synaptic Strength and LTD , 2008, Neuron.

[47]  S. Grant,et al.  Opposing effects of PSD‐93 and PSD‐95 on long‐term potentiation and spike timing‐dependent plasticity , 2008, The Journal of physiology.

[48]  S. Swamy,et al.  Neurotransmitters Drive Combinatorial Multistate Postsynaptic Density Networks , 2009, Science Signaling.

[49]  S. Grant,et al.  The origin and evolution of synapses , 2009, Nature Reviews Neuroscience.

[50]  S. Grant,et al.  Targeted tandem affinity purification of PSD-95 recovers core postsynaptic complexes and schizophrenia susceptibility proteins , 2009, Molecular systems biology.

[51]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[52]  X. Zhuang,et al.  Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells , 2010, Cell.

[53]  Weifeng Xu,et al.  PSD-95-like membrane associated guanylate kinases (PSD-MAGUKs) and synaptic plasticity , 2011, Current Opinion in Neurobiology.

[54]  M. Sheng,et al.  The postsynaptic organization of synapses. , 2011, Cold Spring Harbor perspectives in biology.

[55]  Brian P Keane,et al.  Perceptual organization impairment in schizophrenia and associated brain mechanisms: review of research from 2005 to 2010. , 2011, Schizophrenia bulletin.

[56]  S. Grant,et al.  Characterization of the proteome, diseases and evolution of the human postsynaptic density , 2011, Nature Neuroscience.

[57]  O. Sporns,et al.  Rich-Club Organization of the Human Connectome , 2011, The Journal of Neuroscience.

[58]  Michael Smithson,et al.  Doing Bayesian Data Analysis: A Tutorial with R and BUGS, J.J. Kruschke. Academic Press (2011), 653, $89.95Reviewed by Michael Smithson, ISBN: 9780123814852 , 2011 .

[59]  Zhi-Hua Zhou,et al.  Ensemble Methods: Foundations and Algorithms , 2012 .

[60]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[61]  Lei Yang,et al.  A new feature-preserving nonlinear anisotropic diffusion for denoising images containing blobs and ridges , 2012, Pattern Recognit. Lett..

[62]  Stephen J. Smith,et al.  Deep molecular diversity of mammalian synapses: why it matters and how to measure it , 2012, Nature Reviews Neuroscience.

[63]  S. Grant,et al.  Comparative Study of Human and Mouse Postsynaptic Proteomes Finds High Compositional Conservation and Abundance Differences for Key Synaptic Proteins , 2012, PloS one.

[64]  Richard D Emes,et al.  Synaptic scaffold evolution generated components of vertebrate cognitive complexity , 2012, Nature Neuroscience.

[65]  R. Kaji,et al.  Response of striosomal opioid signaling to dopamine depletion in 6-hydroxydopamine-lesioned rat model of Parkinson's disease: a potential compensatory role , 2013, Front. Cell. Neurosci..

[66]  Hui Xiong,et al.  Understanding and Enhancement of Internal Clustering Validation Measures , 2013, IEEE Transactions on Cybernetics.

[67]  L. Saksida,et al.  Evolution of GluN2A/B cytoplasmic domains diversified vertebrate synaptic plasticity and behavior , 2012, Nature Neuroscience.

[68]  Rafael Yuste,et al.  Age-based comparison of human dendritic spine structure using complete three-dimensional reconstructions. , 2013, Cerebral cortex.

[69]  Deli Zhao,et al.  Agglomerative clustering via maximum incremental path integral , 2013, Pattern Recognit..

[70]  William J. Godinez,et al.  Objective comparison of particle tracking methods , 2014, Nature Methods.

[71]  Joaquín Goñi,et al.  A Network Convergence Zone in the Hippocampus , 2014, PLoS Comput. Biol..

[72]  Brian D. Mills,et al.  Large-scale topology and the default mode network in the mouse connectome , 2014, Proceedings of the National Academy of Sciences.

[73]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[74]  S. Tenzer,et al.  In‐depth protein profiling of the postsynaptic density from mouse hippocampus using data‐independent acquisition proteomics , 2014, Proteomics.

[75]  May-Britt Moser,et al.  Functional diversity along the transverse axis of hippocampal area CA1 , 2014, FEBS letters.

[76]  C. Papatheodoropoulos,et al.  Differences in paired-pulse inhibition and facilitation in the dentate gyrus and CA3 field between dorsal and ventral rat hippocampus , 2015, Brain Research.

[77]  Edward T. Bullmore,et al.  Functional brain network changes associated with clinical and biochemical measures of the severity of hepatic encephalopathy , 2015, NeuroImage.

[78]  E. Bullmore,et al.  Wiring cost and topological participation of the mouse brain connectome , 2015, Proceedings of the National Academy of Sciences.

[79]  Jan Baumbach,et al.  Comparing the performance of biomedical clustering methods , 2015, Nature Methods.

[80]  L. Vissers,et al.  Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability , 2016, Nature Neuroscience.

[81]  Li Li,et al.  Association analysis of genetic variant of rs13331 in PSD95 gene with autism spectrum disorders: A case-control study in a Chinese population , 2016, Journal of Huazhong University of Science and Technology [Medical Sciences].

[82]  S. Grant The molecular evolution of the vertebrate behavioural repertoire , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[83]  Attila Losonczy,et al.  Sublayer-Specific Coding Dynamics during Spatial Navigation and Learning in Hippocampal Area CA1 , 2016, Neuron.

[84]  T. Iidaka,et al.  Resequencing and Association Analysis of Six PSD-95-Related Genes as Possible Susceptibility Genes for Schizophrenia and Autism Spectrum Disorders , 2016, Scientific Reports.

[85]  R. Weinberg,et al.  Identification of an elaborate complex mediating postsynaptic inhibition , 2016, Science.

[86]  D. Klenerman,et al.  PSD95 nanoclusters are postsynaptic building blocks in hippocampus circuits , 2016, Scientific Reports.

[87]  K. Deisseroth,et al.  Prefrontal Parvalbumin Neurons in Control of Attention , 2016, Cell.

[88]  S. Grant,et al.  NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation , 2016, Nature Communications.

[89]  Christian F. Doeller,et al.  Mnemonic convergence in the human hippocampus , 2016, Nature Communications.

[90]  Richard D Emes,et al.  Evolution of complexity in the zebrafish synapse proteome , 2017, Nature Communications.

[91]  S. Grant,et al.  Hierarchical organization and genetically separable subfamilies of PSD95 postsynaptic supercomplexes , 2017, Journal of neurochemistry.

[92]  S. Grant,et al.  Proteomic analysis of postsynaptic proteins in regions of the human neocortex , 2017, Nature Neuroscience.

[93]  Thomas L. Dunwell,et al.  New genes from old: asymmetric divergence of gene duplicates and the evolution of development , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[94]  I. Deary,et al.  Arc Requires PSD95 for A ssembly into Postsynaptic Complexes Involved with Neural Dysfunction and Intelligence , 2017 .

[95]  C. Papatheodoropoulos,et al.  A gradient of frequency-dependent synaptic properties along the longitudinal hippocampal axis , 2017, BMC Neuroscience.

[96]  Matthew T. Kaufman,et al.  Movement-related activity dominates cortex during sensory-guided decision making , 2018, bioRxiv.

[97]  L. Saksida,et al.  Enhanced cognition and dysregulated hippocampal synaptic physiology in mice with a heterozygous deletion of PSD‐95 , 2018, The European journal of neuroscience.