DYRK3 enables secretory trafficking by maintaining the liquid-like state of ER exit sites.

[1]  A. Brazma,et al.  The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences , 2021, Nucleic Acids Res..

[2]  V. Malhotra,et al.  TANGO1 marshals the early secretory pathway for cargo export. , 2021, Biochimica et biophysica acta. Biomembranes.

[3]  J. Shorter,et al.  Higher-order organization of biomolecular condensates , 2021, Open Biology.

[4]  J. Lippincott-Schwartz,et al.  ER-to-Golgi protein delivery through an interwoven, tubular network extending from ER , 2021, Cell.

[5]  M. Rosen,et al.  A framework for understanding the functions of biomolecular condensates across scales , 2020, Nature Reviews Molecular Cell Biology.

[6]  Kota Saito,et al.  Mitotic ER Exit Site Disassembly and Reassembly Are Regulated by the Phosphorylation Status of TANGO1. , 2020, Developmental cell.

[7]  R. Aebersold,et al.  Multi-layered proteomic analyses decode compositional and functional effects of cancer mutations on kinase complexes , 2020, Nature Communications.

[8]  Yan G Zhao,et al.  Phase Separation in Membrane Biology: The Interplay between Membrane-Bound Organelles and Membraneless Condensates. , 2020, Developmental cell.

[9]  R. Best,et al.  Biomolecular Phase Separation: From Molecular Driving Forces to Macroscopic Properties. , 2020, Annual review of physical chemistry.

[10]  J. Rothman,et al.  Liquid–liquid phase separation of the Golgi matrix protein GM130 , 2019, FEBS letters.

[11]  S. Alberti,et al.  Liquid-Liquid Phase Separation in Disease. , 2019, Annual review of genetics.

[12]  J. Rothman Jim's View: Is the Golgi stack a phase‐separated liquid crystal? , 2019, FEBS letters.

[13]  Fred A. Hamprecht,et al.  ilastik: interactive machine learning for (bio)image analysis , 2019, Nature Methods.

[14]  Marina Feric,et al.  Controlling the material properties and rRNA processing function of the nucleolus using light , 2019, Proceedings of the National Academy of Sciences.

[15]  Y. Ishihama,et al.  Large-scale Discovery of Substrates of the Human Kinome , 2019, Scientific Reports.

[16]  Olga Tanaseichuk,et al.  Metascape provides a biologist-oriented resource for the analysis of systems-level datasets , 2019, Nature Communications.

[17]  A. Audhya,et al.  COPII‐mediated trafficking at the ER/ERGIC interface , 2019, Traffic.

[18]  D. Drummond,et al.  Cellular sensing by phase separation: Using the process, not just the products , 2019, The Journal of Biological Chemistry.

[19]  T. Mittag,et al.  Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates , 2019, Cell.

[20]  L. Giaquinto,et al.  The TRAPP complex mediates secretion arrest induced by stress granule assembly , 2019, bioRxiv.

[21]  Lucas Pelkmans,et al.  A Systems-Level Study Reveals Regulators of Membrane-less Organelles in Human Cells. , 2018, Molecular cell.

[22]  A. Nakano,et al.  The ER exit sites are specialized ER zones for the transport of cargo proteins from the ER to the Golgi apparatus , 2018, Journal of biochemistry.

[23]  P. Cramer,et al.  RNA polymerase II clustering through carboxy-terminal domain phase separation , 2018, Nature Structural & Molecular Biology.

[24]  N. Perrimon,et al.  Efficient proximity labeling in living cells and organisms with TurboID , 2018, Nature Biotechnology.

[25]  M. Selbach,et al.  Kinase-controlled phase transition of membraneless organelles in mitosis , 2018, Nature.

[26]  R. Pappu,et al.  A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins , 2018, Cell.

[27]  D. Stephens,et al.  COPII-dependent ER export in animal cells: adaptation and control for diverse cargo , 2018, Histochemistry and Cell Biology.

[28]  Nicolas L. Fawzi,et al.  Protein Phase Separation: A New Phase in Cell Biology. , 2018, Trends in cell biology.

[29]  C. Brangwynne,et al.  Liquid phase condensation in cell physiology and disease , 2017, Science.

[30]  Michael Z. Lin,et al.  Understanding CRY2 interactions for optical control of intracellular signaling , 2017, Nature Communications.

[31]  R. Schekman,et al.  TFG facilitates outer coat disassembly on COPII transport carriers to promote tethering and fusion with ER–Golgi intermediate compartments , 2017, Proceedings of the National Academy of Sciences.

[32]  Roland Brock,et al.  Frapbot: An open‐source application for FRAP data , 2017, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[33]  T. Katada,et al.  TANGO1 recruits Sec16 to coordinately organize ER exit sites for efficient secretion , 2017, The Journal of cell biology.

[34]  Stephanie C. Weber Sequence-encoded material properties dictate the structure and function of nuclear bodies. , 2017, Current opinion in cell biology.

[35]  A. Hyman,et al.  The Centrosome Is a Selective Condensate that Nucleates Microtubules by Concentrating Tubulin , 2017, Cell.

[36]  Lisa D. Muiznieks,et al.  Direct observation of structure and dynamics during phase separation of an elastomeric protein , 2017, Proceedings of the National Academy of Sciences.

[37]  Anthony A. Hyman,et al.  Biomolecular condensates: organizers of cellular biochemistry , 2017, Nature Reviews Molecular Cell Biology.

[38]  Jared E. Toettcher,et al.  Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated optoDroplets , 2017, Cell.

[39]  J. Goldberg,et al.  TANGO1/cTAGE5 receptor as a polyvalent template for assembly of large COPII coats , 2016, Proceedings of the National Academy of Sciences.

[40]  Claire H. Michel,et al.  ALS/FTD Mutation-Induced Phase Transition of FUS Liquid Droplets and Reversible Hydrogels into Irreversible Hydrogels Impairs RNP Granule Function , 2015, Neuron.

[41]  S. Stagg,et al.  TFG clusters COPII‐coated transport carriers and promotes early secretory pathway organization , 2015, The EMBO journal.

[42]  C. Rabouille,et al.  SEC16 in COPII coat dynamics at ER exit sites. , 2015, Biochemical Society transactions.

[43]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[44]  E. Betzig,et al.  Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans , 2014, eLife.

[45]  C. Rabouille,et al.  A stress assembly that confers cell viability by preserving ERES components during amino-acid starvation , 2014, eLife.

[46]  Marco Y. Hein,et al.  Accurate Protein Complex Retrieval by Affinity Enrichment Mass Spectrometry (AE-MS) Rather than Affinity Purification Mass Spectrometry (AP-MS)* , 2014, Molecular & Cellular Proteomics.

[47]  S. Munro,et al.  The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins , 2014, Science.

[48]  X. Chen,et al.  Leucine‐rich repeat kinase 2 regulates Sec16A at ER exit sites to allow ER–Golgi export , 2014, The EMBO journal.

[49]  A. Hyman,et al.  Liquid-liquid phase separation in biology. , 2014, Annual review of cell and developmental biology.

[50]  D. Lauffenburger,et al.  Reproducible Automated Phosphopeptide Enrichment Using Magnetic TiO2 and Ti-IMAC , 2014, Analytical chemistry.

[51]  M. Mann,et al.  Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. , 2014, Cell reports.

[52]  B. Glick Integrated self‐organization of transitional ER and early Golgi compartments , 2014, BioEssays : news and reviews in molecular, cellular and developmental biology.

[53]  Tony Pawson,et al.  Protein Interaction Network of the Mammalian Hippo Pathway Reveals Mechanisms of Kinase-Phosphatase Interactions , 2013, Science Signaling.

[54]  P. Jeffrey,et al.  Sec16 influences transitional ER sites by regulating rather than organizing COPII , 2013, Molecular biology of the cell.

[55]  R. Schekman,et al.  Copii — a Flexible Vesicle Formation System This Review Comes from a Themed Issue on Cell Organelles Biophysics of Copii-mediated Vesicle Formation , 2022 .

[56]  Peter Tompa,et al.  Structural Disorder Provides Increased Adaptability for Vesicle Trafficking Pathways , 2013, PLoS Comput. Biol..

[57]  F. Brandizzi,et al.  Organization of the ER–Golgi interface for membrane traffic control , 2013, Nature Reviews Molecular Cell Biology.

[58]  Neal J. Zondlo Aromatic-proline interactions: electronically tunable CH/π interactions. , 2013, Accounts of chemical research.

[59]  Ruedi Aebersold,et al.  Dual Specificity Kinase DYRK3 Couples Stress Granule Condensation/Dissolution to mTORC1 Signaling , 2013, Cell.

[60]  Roy Parker,et al.  P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. , 2012, Cold Spring Harbor perspectives in biology.

[61]  T. Yorimitsu,et al.  Insights into structural and regulatory roles of Sec16 in COPII vesicle formation at ER exit sites , 2012, Molecular biology of the cell.

[62]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[63]  Jimin Pei,et al.  Cell-free Formation of RNA Granules: Bound RNAs Identify Features and Components of Cellular Assemblies , 2012, Cell.

[64]  Franck Perez,et al.  Synchronization of secretory protein traffic in populations of cells , 2012, Nature Methods.

[65]  Paul S. Russo,et al.  Phase Transitions in the Assembly of MultiValent Signaling Proteins , 2016 .

[66]  V. Malhotra,et al.  Protein export at the ER: loading big collagens into COPII carriers , 2011, The EMBO journal.

[67]  Hubert Rehrauer,et al.  B-Fabric: the Swiss Army Knife for life sciences , 2010, EDBT '10.

[68]  B. Glick,et al.  The yeast Golgi apparatus: Insights and mysteries , 2009, FEBS letters.

[69]  Judith M. Mantell,et al.  Organisation of human ER-exit sites: requirements for the localisation of Sec16 to transitional ER , 2009, Journal of Cell Science.

[70]  A. Hyman,et al.  Germline P Granules Are Liquid Droplets That Localize by Controlled Dissolution/Condensation , 2009, Science.

[71]  C. Hawes,et al.  Grab a Golgi: Laser Trapping of Golgi Bodies Reveals in vivo Interactions with the Endoplasmic Reticulum , 2009, Traffic.

[72]  R. Schekman,et al.  TANGO1 Facilitates Cargo Loading at Endoplasmic Reticulum Exit Sites , 2009, Cell.

[73]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[74]  L. Hendershot,et al.  Regulated association of misfolded endoplasmic reticulum lumenal proteins with P58/DNAJc3 , 2008, The EMBO journal.

[75]  C. Rabouille,et al.  Drosophila Sec16 mediates the biogenesis of tER sites upstream of Sar1 through an arginine-rich motif. , 2008, Molecular biology of the cell.

[76]  Stephen S. Taylor,et al.  Mps1 kinase activity restrains anaphase during an unperturbed mitosis and targets Mad2 to kinetochores , 2008, The Journal of cell biology.

[77]  B. Glick,et al.  Two mammalian Sec16 homologues have nonredundant functions in endoplasmic reticulum (ER) export and transitional ER organization. , 2007, Molecular biology of the cell.

[78]  David J Stephens,et al.  Sec16 Defines Endoplasmic Reticulum Exit Sites and is Required for Secretory Cargo Export in Mammalian Cells , 2006, Traffic.

[79]  Margarita Cabrera,et al.  Golgi structural stability and biogenesis depend on associated PKA activity , 2006, Journal of Cell Science.

[80]  B. Humbel,et al.  Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated transport carriers , 2006, Nature Cell Biology.

[81]  R. Pepperkok,et al.  Secretory Cargo Regulates the Turnover of COPII Subunits at Single ER Exit Sites , 2006, Current Biology.

[82]  B. Tang,et al.  COPII and exit from the endoplasmic reticulum. , 2005, Biochimica et biophysica acta.

[83]  B. Fontoura,et al.  Sec13 Shuttles between the Nucleus and the Cytoplasm and Stably Interacts with Nup96 at the Nuclear Pore Complex , 2003, Molecular and Cellular Biology.

[84]  L. Staehelin,et al.  Tomographic evidence for continuous turnover of Golgi cisternae in Pichia pastoris. , 2003, Molecular biology of the cell.

[85]  D. Stephens De novo formation, fusion and fission of mammalian COPII‐coated endoplasmic reticulum exit sites , 2003, EMBO reports.

[86]  M. Mann,et al.  Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. , 2003, Analytical chemistry.

[87]  B. Glick,et al.  De novo formation of transitional ER sites and Golgi structures in Pichia pastoris , 2002, Nature Cell Biology.

[88]  R. Schekman,et al.  Sec16p potentiates the action of COPII proteins to bud transport vesicles , 2002, The Journal of cell biology.

[89]  A. Lamond,et al.  Dynamic targeting of protein phosphatase 1 within the nuclei of living mammalian cells. , 2001, Journal of cell science.

[90]  J. Lippincott-Schwartz,et al.  Maintenance of Golgi structure and function depends on the integrity of ER export , 2001, The Journal of cell biology.

[91]  T. Misteli The concept of self-organization in cellular architecture , 2001, The Journal of cell biology.

[92]  A. Linstedt,et al.  Potential role for protein kinases in regulation of bidirectional endoplasmic reticulum-to-Golgi transport revealed by protein kinase inhibitor H89. , 2000, Molecular biology of the cell.

[93]  R. Schekman,et al.  COPII-Coated Vesicle Formation Reconstituted with Purified Coat Proteins and Chemically Defined Liposomes , 1998, Cell.

[94]  D. Shaywitz,et al.  COPII Subunit Interactions in the Assembly of the Vesicle Coat* , 1997, The Journal of Biological Chemistry.

[95]  Jennifer Lippincott-Schwartz,et al.  ER-to-Golgi transport visualized in living cells , 1997, Nature.

[96]  C. Kaiser,et al.  COPII coat subunit interactions: Sec24p and Sec23p bind to adjacent regions of Sec16p. , 1996, Molecular biology of the cell.

[97]  W. Balch,et al.  The organization of endoplasmic reticulum export complexes , 1996, The Journal of cell biology.

[98]  J. Lippincott-Schwartz,et al.  Diffusional Mobility of Golgi Proteins in Membranes of Living Cells , 1996, Science.

[99]  R. Schekman,et al.  COPII: A membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum , 1994, Cell.

[100]  J. Lippincott-Schwartz,et al.  Brefeldin A: insights into the control of membrane traffic and organelle structure , 1992, The Journal of cell biology.

[101]  J. Rothman,et al.  Molecular dissection of the secretory pathway , 1992, Nature.

[102]  R. Schekman,et al.  Mammalian Sec23p homologue is restricted to the endoplasmic reticulum transitional cytoplasm. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[103]  W. Balch,et al.  Sequential transport of protein between the endoplasmic reticulum and successive Golgi compartments in semi-intact cells. , 1991, The Journal of biological chemistry.

[104]  R. Schekman,et al.  Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway , 1980, Cell.

[105]  George Palade,et al.  Intracellular Aspects of the Process of Protein Synthesis , 1975, Science.

[106]  P. Romero,et al.  Sequence complexity of disordered protein , 2001, Proteins.

[107]  J. Lippincott-Schwartz,et al.  Secretory protein trafficking and organelle dynamics in living cells. , 2000, Annual review of cell and developmental biology.