Spatial resolution and velocity field improvement of 4D‐flow MRI

4D‐flow MRI obtains a time‐dependent 3D velocity field; however, its use for the calculation of higher‐order parameters is limited by noise. We present an algorithm for denoising 4D‐flow data.

[1]  G. Glover,et al.  Encoding strategies for three‐direction phase‐contrast MR imaging of flow , 1991, Journal of magnetic resonance imaging : JMRI.

[2]  R. Herfkens,et al.  Phase contrast cine magnetic resonance imaging. , 1991, Magnetic resonance quarterly.

[3]  N J Pelc,et al.  Noise reduction in three‐dimensional phase‐contrast MR velocity measurementsl , 1993, Journal of magnetic resonance imaging : JMRI.

[4]  P. Walker,et al.  Semiautomated method for noise reduction and background phase error correction in MR phase velocity data , 1993, Journal of magnetic resonance imaging : JMRI.

[5]  R. Pettigrew,et al.  Determination of wall shear stress in the aorta with the use of MR phase velocity mapping , 1995, Journal of magnetic resonance imaging : JMRI.

[6]  Peter Boesiger,et al.  Blood flow in the human ascending aorta: a combined MRI and CFD study , 2003 .

[7]  William J. Schroeder,et al.  The Visualization Toolkit , 2005, The Visualization Handbook.

[8]  J. Hennig,et al.  Quantitative 2D and 3D phase contrast MRI: Optimized analysis of blood flow and vessel wall parameters , 2008, Magnetic resonance in medicine.

[9]  Alfio Quarteroni,et al.  Cardiovascular mathematics : modeling and simulation of the circulatory system , 2009 .

[10]  Arnan Mitchell,et al.  A shear gradient–dependent platelet aggregation mechanism drives thrombus formation , 2009, Nature Medicine.

[11]  Jon-Fredrik Nielsen,et al.  Feasibility of in vivo measurement of carotid wall shear rate using spiral fourier velocity encoded MRI , 2010, Magnetic resonance in medicine.

[12]  Vartan Kurtcuoglu,et al.  Choosing the optimal wall shear parameter for the prediction of plaque location-A patient-specific computational study in human right coronary arteries. , 2010, Atherosclerosis.

[13]  J. Hennig,et al.  4D phase contrast MRI at 3 T: Effect of standard and blood‐pool contrast agents on SNR, PC‐MRA, and blood flow visualization , 2010, Magnetic resonance in medicine.

[14]  Michael Markl,et al.  In vivo noninvasive 4D pressure difference mapping in the human aorta: Phantom comparison and application in healthy volunteers and patients , 2011, Magnetic resonance in medicine.

[15]  M. Markl,et al.  Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance , 2011, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[16]  T. Christian Gasser,et al.  Blood flow and coherent vortices in the normal and aneurysmatic aortas: a fluid dynamical approach to intra-luminal thrombus formation , 2011, Journal of The Royal Society Interface.

[17]  Petter Dyverfeldt,et al.  4-D blood flow in the human right ventricle. , 2011, American journal of physiology. Heart and circulatory physiology.

[18]  M. Langer,et al.  Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR , 2012, Journal of Cardiovascular Magnetic Resonance.

[19]  M. Markl,et al.  Flow‐sensitive 4D MRI of the thoracic aorta: Comparison of image quality, quantitative flow, and wall parameters at 1.5 T and 3 T , 2012, Journal of magnetic resonance imaging : JMRI.

[20]  Petter Dyverfeldt,et al.  Assessment of the accuracy of MRI wall shear stress estimation using numerical simulations , 2012, Journal of magnetic resonance imaging : JMRI.

[21]  E Heiberg,et al.  Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements. , 2012, American journal of physiology. Heart and circulatory physiology.

[22]  Sebastian Kozerke,et al.  Reconstruction of divergence‐free velocity fields from cine 3D phase‐contrast flow measurements , 2013, Magnetic resonance in medicine.

[23]  M. Langer,et al.  Aortic wall shear stress in Marfan syndrome , 2013, Magnetic resonance in medicine.

[24]  P. Hoskins,et al.  Comparison of patient‐specific inlet boundary conditions in the numerical modelling of blood flow in abdominal aortic aneurysm disease , 2013, International journal for numerical methods in biomedical engineering.

[25]  Boudewijn P F Lelieveldt,et al.  Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis , 2014, Journal of Cardiovascular Magnetic Resonance.

[26]  Frank Ong,et al.  Robust 4D flow denoising using divergence‐free wavelet transform , 2015, Magnetic resonance in medicine.

[27]  M. Markl,et al.  4D flow cardiovascular magnetic resonance consensus statement , 2015, Journal of Cardiovascular Magnetic Resonance.

[28]  Stuart M Grieve,et al.  Use of multi‐velocity encoding 4D flow MRI to improve quantification of flow patterns in the aorta , 2016, Journal of magnetic resonance imaging : JMRI.

[29]  Michael Lustig,et al.  Comprehensive motion‐compensated highly accelerated 4D flow MRI with ferumoxytol enhancement for pediatric congenital heart disease , 2016, Journal of magnetic resonance imaging : JMRI.

[30]  Keiichi Itatani,et al.  Blood flow analysis of the aortic arch using computational fluid dynamics. , 2016, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[31]  S. Vasanawala,et al.  Evaluation of atrial septal defects with 4D flow MRI—multilevel and inter-reader reproducibility for quantification of shunt severity , 2018, Magnetic Resonance Materials in Physics, Biology and Medicine.