Corrosion behaviour of extruded AM30 magnesium alloy under salt-spray and immersion environments

Abstract The mechanisms associated with general, pitting, and filiform corrosion were quantified at various intervals for extruded AM30 magnesium alloy exposed to a cyclical salt spray and immersion environment. The three mechanisms were quantified using optical microscopy, laser profilometry, and SEM coupled with EDX for over 60 h of testing. General corrosion and pitting corrosion were more severe in the immersion environment, and filiform corrosion was more severe in the salt-spray environment. The presence of a sodium ion (Na + ) diffusion region around the edge of the corrosion pits functioned as cathodic sites, accelerating the localised pitting corrosion rates in immersion environment.

[1]  J. Svensson,et al.  The influence of NaCl and CO2 on the atmospheric corrosion of magnesium alloy AZ91 , 2003 .

[2]  H. Pickering,et al.  On Electric Field Induced Breakdown of Passive Films and the Mechanism of Pitting Corrosion , 1993 .

[3]  G. Frankel,et al.  Influence of Dichromate Ions on Corrosion Processes on Pure Magnesium , 2003 .

[4]  C. Leygraf,et al.  Atmospheric corrosion of field exposed magnesium alloy AZ91D , 2008 .

[5]  D. Thierry,et al.  Corrosion product formation during NaCl induced atmospheric corrosion of magnesium alloy AZ91D , 2007 .

[6]  G. Song,et al.  Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride , 1998 .

[7]  Mark F. Horstemeyer,et al.  Quantification of corrosion mechanisms under immersion and salt-spray environments on an extruded AZ31 magnesium alloy , 2012 .

[8]  W. Dietzel,et al.  Comparison of Corrosion Properties of Squeeze Cast and Thixocast MgZnRE Alloys , 2005 .

[9]  G. Song,et al.  Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance , 2003 .

[10]  G. Song,et al.  An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing , 2009 .

[11]  A. Luo,et al.  Development of a New Wrought Magnesium-Aluminum-Manganese Alloy AM30 , 2007 .

[12]  D. Persson,et al.  The Initial Steps of Atmospheric Corrosion on Magnesium Alloy AZ91D , 2007 .

[13]  W. White Thermodynamic equilibrium, kinetics, activation barriers, and reaction mechanisms for chemical reactions in Karst Terrains , 1997 .

[14]  Andrew T. S. Wee,et al.  An XPS investigation of the oxidation/corrosion of melt-spun Mg , 2000 .

[15]  R. Arrabal,et al.  Influence of chloride ion concentration and temperature on the corrosion of Mg–Al alloys in salt fog , 2010 .

[16]  K. Nisancioglu,et al.  Morphology and Structure of Water‐Formed Oxides on Ternary MgAl Alloys , 1997 .

[17]  K. Nisancioglu,et al.  A TEM investigation of naturally formed oxide films on pure magnesium , 1997 .

[18]  G. Song Recent Progress in Corrosion and Protection of Magnesium Alloys , 2005 .

[19]  R. Ruggeri,et al.  An Analysis of Mass Transfer in Filiform Corrosion , 1983 .

[20]  D. Thierry,et al.  The influence of microstructure on the corrosion behaviour of AZ91D studied by scanning Kelvin probe force microscopy and scanning Kelvin probe , 2006 .

[21]  M. Horstemeyer,et al.  Quantification of Corrosion Pitting Under Immersion and Salt Spray Environments on an As-Cast AM60 Magnesium Alloy , 2012 .

[22]  E. Gulbrandsen,et al.  The passive behaviour of Mg in alkaline fluoride solutions. Electrochemical and electron microscopical investigations , 1993 .

[23]  C. Blanc,et al.  AC Impedance Spectroscopy in Characterizing Time-Dependent Corrosion of AZ91 and AM50 Magnesium Alloys Characterization with Respect to Their Microstructures , 2001 .

[24]  Wei Zhou,et al.  Evaluation of corrosion resistance of magnesium alloys in radiator coolants , 2011 .

[25]  O. Lunder,et al.  Corrosion morphologies on magnesium alloy AZ 91 , 1994 .

[26]  Wei Ke,et al.  Review of studies on corrosion of magnesium alloys , 2006 .

[27]  Andrej Atrens,et al.  Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation , 2010 .

[28]  F. Cao,et al.  Influence of rare earth element Ce and La addition on corrosion behavior of AZ91 magnesium alloy , 2009 .

[29]  Mark F. Horstemeyer,et al.  Modeling stress state dependent damage evolution in a cast Al–Si–Mg aluminum alloy , 2000 .

[30]  Dan Eliezer,et al.  Effect of Second Phases on the Corrosion Behavior of Magnesium Alloys , 2003 .

[31]  Mark F. Horstemeyer,et al.  Structure–property quantification of corrosion pitting under immersion and salt-spray environments on an extruded AZ61 magnesium alloy , 2011 .

[32]  S. Dean,et al.  Atmospheric Corrosion of Metals , 1982 .

[33]  G. Song,et al.  A first quantitative XPS study of the surface films formed, by exposure to water, on Mg and on the Mg–Al intermetallics: Al3Mg2 and Mg17Al12 , 2009 .

[34]  M. Liu,et al.  Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91 , 2008 .

[35]  E. Ghali,et al.  General and localized corrosion of magnesium alloys: A critical review , 2004 .

[36]  Jorge F. Santos,et al.  Corrosion of friction stir welded magnesium alloy AM50 , 2009 .

[37]  Zhao Zhang,et al.  Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys , 2009 .

[38]  M. Gibson,et al.  On the corrosion of binary magnesium-rare earth alloys , 2009 .

[39]  J. Majumdar,et al.  Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy , 2003 .