Attainable yield and soil texture as drivers of maize response to nitrogen: A synthesis analysis for Argentina
暂无分享,去创建一个
Ignacio A. Ciampitti | Fernando Salvagiotti | Mirian Barraco | Manuel Ferrari | Vicente Gudelj | Adrián A. Correndo | Flavio H. Gutiérrez-Boem | Fernando O. García | Carolina Alvarez | Cristian Álvarez | Ariel Angeli | Pablo Barbieri | Angel Berardo | Miguel Boxler | Pablo Calviño | Julia E. Capurro | Héctor Carta | Octavio Caviglia | Martín Díaz-Zorita | Santiago Díaz-Valdéz | Hernán E. Echeverría | Gabriel Espósito | Gustavo N. Ferraris | Sebastian Gambaudo | Juan P. Ioele | Ricardo J.M. Melchiori | Josefina Molino | Juan M. Orcellet | Agustin Pagani | Juan M. Pautasso | Nahuel I. Reussi Calvo | Matías Redel | Sergio Rillo | Helena Rimski-Korsakov | Hernán R. Sainz-Rozas | Matías Saks | Ma. Guadalupe Tellería | Luis Ventimiglia | Jose L. Zorzín | Ma. Mercedes Zubillaga | R. Melchiori | I. Ciampitti | F. Salvagiotti | F. García | C. Álvarez | O. Caviglia | P. Barbieri | H. Echeverría | A. Pagani | M. Zubillaga | P. Calviño | M. Díaz-Zorita | G. Ferraris | A. Berardo | C. Alvarez | A. Correndo | H. Rimski-Korsakov | M. Barraco | M. Ferrari | Hernán R. Sainz-rozas | N. R. Calvo | S. Rillo | F. H. Gutiérrez-Boem | Miguel Boxler | G. Espósito | V. Gudelj | L. Ventimiglia | Juan Orcellet | Ariel Angeli | H. Carta | Santiago Díaz-Valdéz | S. Gambaudo | J. P. Ioele | Josefina Molino | Matías Redel | M. Saks | M. Díaz-Zorita
[1] D. W. Reeves,et al. Assessing indices for predicting potential nitrogen mineralization in soils under different management systems. , 2009 .
[2] L. Borrás,et al. Sowing date and maize grain quality for dry milling , 2018 .
[3] L. Garibaldi,et al. Exploring genotype, management, and environmental variables influencing grain yield of late-sown maize in central Argentina , 2016 .
[4] H. Echeverría,et al. Prognosis and diagnosis of sulfur status in maize by plant analysis , 2019, European Journal of Agronomy.
[5] J. L. Dardanelli,et al. ROOTING DEPTH AND SOIL WATER EXTRACTION PATTERNS OF DIFFERENT CROPS IN A SILTY LOAM HAPLUSTOLL , 1997 .
[6] J. Castellarín,et al. Dosis óptima económica de nitrógeno en maíz según potencial de producción y disponibilidad de nitrógeno en la región pampeana norte , 2011 .
[7] Regional model for nitrogen fertilization of site-specific rainfed corn in haplustolls of the central Pampas, Argentina , 2011, Precision Agriculture.
[8] H. S. Rozas,et al. Anaerobically Incubated Nitrogen Improved Nitrogen Diagnosis in Corn , 2017 .
[9] F. Salvagiotti,et al. Biological nitrogen fixation in field pea and vetch: Response to inoculation and residual effect on maize in the Pampean region , 2020 .
[10] R. Alvarez,et al. PREDICTIONS OF AVAILABLE NITROGEN CONTENT IN SOIL PROFILE DEPTH USING AVAILABLE NITROGEN CONCENTRATION IN SURFACE LAYER , 2001 .
[11] H. Shahandeh,et al. Use of soil nitrogen parameters and texture for spatially-variable nitrogen fertilization , 2011, Precision Agriculture.
[12] N. Tremblay,et al. Corn yield components response to nitrogen fertilizer as a function of soil texture , 2016, Canadian Journal of Soil Science.
[13] N. Tremblay,et al. Economic Optimum Nitrogen Fertilizer Rate and Residual Soil Nitrate as Influenced by Soil Texture in Corn Production , 2018, Agronomy Journal.
[14] R. Alvarez,et al. Analysis of Soil Fertility and Management Effects on Yields of Wheat and Corn in the Rolling Pampa of Argentina , 2005 .
[15] John E. Sawyer,et al. Strengths and Limitations of Nitrogen Rate Recommendations for Corn and Opportunities for Improvement , 2018 .
[16] G. Stanford,et al. Rationale for Optimum Nitrogen Fertilization in Corn Production , 1973 .
[17] R. Melchiori,et al. Plant nitrogen status at flowering and kernel set efficiency in early- and late-sown maize crops , 2021, Field Crops Research.
[18] Kenneth G. Cassman,et al. Estimating maize nutrient uptake requirements. , 2010 .
[19] J. Thompson. The Role of Ammonia in Nitrogen Metabolism of Plants , 1966 .
[20] A. Blackmer,et al. Comparison of Models for Describing; Corn Yield Response to Nitrogen Fertilizer , 1990 .
[21] J. Meisinger,et al. Nitrogen Availability Indices , 2018, SSSA Book Series.
[22] K. Congreves,et al. Nitrogen Use Efficiency Definitions of Today and Tomorrow , 2021, Frontiers in Plant Science.
[23] I. Ciampitti,et al. Understanding Global and Historical Nutrient Use Efficiencies for Closing Maize Yield Gaps , 2014 .
[24] P. Woodbury,et al. Dynamic model-based N management reduces surplus nitrogen and improves the environmental performance of corn production , 2018 .
[25] Kenneth G. Cassman,et al. Potential for crop production increase in Argentina through closure of existing yield gaps , 2015 .
[26] J. Garnier,et al. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland , 2014 .
[27] H. S. Rozas,et al. Predicting field‐apparent nitrogen mineralization from anaerobically incubated nitrogen , 2018 .
[28] A. Dobermann,et al. Maize-N: A Decision Tool for Nitrogen Management in Maize , 2011 .
[29] R. Alvarez,et al. A regional audit of nitrogen fluxes in pampean agroecosystems , 2014 .
[30] J. Six,et al. Does the combined application of organic and mineral nutrient sources influence maize productivity? A meta-analysis , 2011, Plant and Soil.
[31] F. Andrade,et al. Nitrogen Use Efficiency in Maize as Affected by Nitrogen Availability and Row Spacing , 2008 .
[32] F. Nachtergaele. Soil taxonomy—a basic system of soil classification for making and interpreting soil surveys: Second edition, by Soil Survey Staff, 1999, USDA–NRCS, Agriculture Handbook number 436, Hardbound , 2001 .
[33] F. Salvagiotti,et al. N:P:S stoichiometry in grains and physiological attributes associated with grain yield in maize as affected by phosphorus and sulfur nutrition , 2017 .
[34] A. Dobermann,et al. Nitrogen and the future of agriculture: 20 years on , 2021, Ambio.
[35] Kenneth G. Cassman,et al. Benchmarking impact of nitrogen inputs on grain yield and environmental performance of producer fields in the western US Corn Belt , 2020, Agriculture, Ecosystems & Environment.
[36] L. Borrás,et al. Maize nitrogen management in soils with influencing water tables within optimum depth , 2020 .
[37] E. Wagenmakers,et al. AIC model selection using Akaike weights , 2004, Psychonomic bulletin & review.
[38] P. Virkajärvi,et al. Phosphorus fertilization: a meta-analysis of 80 years of research in Finland. , 2009 .
[39] David B. Lobell,et al. The cost of uncertainty for nitrogen fertilizer management: A sensitivity analysis , 2007 .
[40] P. Barbieri,et al. Contribution of Anaerobically Mineralized Nitrogen to the Reliability of Planting or Presidedress Soil Nitrogen Test in Maize , 2008 .
[41] Fernando O. García,et al. Improving resource productivity at a crop sequence level , 2019, Field Crops Research.
[42] C. Pieri. Long term soil management experiments in semiarid francophone Africa , 1995 .
[43] Andrej-Nikolai Spiess,et al. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach , 2010, BMC pharmacology.
[44] W. Horwath,et al. Combination of biological and chemical soil tests best predict maize nitrogen response , 2020, Agronomy Journal.
[45] C. R. Álvarez,et al. RECOMENDACIONES PARA LA FERTILIZACION NITROGENADA DE TRIGO Y MAIZ EN LA PAMPA ONDULADA , 2003 .
[46] Charles S. Wortmann,et al. Nitrogen Use Efficiency of Irrigated Corn for Three Cropping Systems in Nebraska , 2011 .
[47] Timothy J. Robinson,et al. Linear Models With R , 2005, Technometrics.
[48] Hangsheng Lin,et al. Hydropedological processes and their implications for nitrogen availability to corn , 2009 .
[49] R. Mead,et al. Statistical Methods in Agriculture and Experimental Biology , 1994 .
[50] J. Briat,et al. Reappraisal of the central role of soil nutrient availability in nutrient management in light of recent advances in plant nutrition at crop and molecular levels , 2020 .
[51] Ignacio A. Ciampitti,et al. A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages , 2011 .
[52] J. Hanway. How a corn plant develops , 1966 .
[53] M. M. Alam,et al. Agronomic improvements can make future cereal systems in South Asia far more productive and result in a lower environmental footprint , 2016, Global change biology.
[54] S. Polasky,et al. A tradeoff frontier for global nitrogen use and cereal production , 2014 .
[55] R. Alvarez. Analysis of Yield Response Variability to Nitrogen Fertilization in Experiments Performed in the Argentine Pampas , 2008 .
[56] R. Bell,et al. Soil phosphorus-crop response calibration relationships and criteria for winter cereal crops grown in Australia , 2013, Crop and Pasture Science.
[57] J. Passioura. Simulation Models: Science, Snake Oil, Education, or Engineering? , 1996 .
[58] B. Efron. Bootstrap Methods: Another Look at the Jackknife , 1979 .
[59] Elke Noellemeyer,et al. Barley yield response to soil organic matter and texture in the Pampas of Argentina , 2006 .
[60] J. Hassink,et al. Effects of soil texture and grassland management on soil organic C and N and rates of C and N mineralization , 1994 .
[61] Sotirios Archontoulis,et al. Development of a nitrogen recommendation tool for corn considering static and dynamic variables , 2019, European Journal of Agronomy.
[62] T. F. Morris,et al. Disaggregating model bias and variability when calculating economic optimum rates of nitrogen fertilization for corn , 2007 .
[63] Ce Yang,et al. Computing uncertainty in the optimum nitrogen rate using a generalized cost function , 2019, Comput. Electron. Agric..
[64] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[65] M. Hanegraaf,et al. Predicting soil N mineralization: Relevance of organic matter fractions and soil properties , 2011 .
[66] Fernando O. García,et al. Long-term phosphorus fertilization of wheat, soybean and maize on Mollisols: Soil test trends, critical levels and balances , 2018 .
[67] H. Echeverría,et al. RESPUESTA A NITRÓGENO Y AZUFRE EN EL CULTIVO DE MAÍZ EN DIFERENTES AMBIENTES DE LA PROVINCIA DE BUENOS AIRES , 2009 .
[68] G. Stanford. Nitrogen Requirements of Crops for Maximum Yield , 2015 .
[69] Roger W. Johnson,et al. An Introduction to the Bootstrap , 2001 .
[70] I. Ciampitti,et al. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review , 2012 .
[71] H. Di,et al. Nitrogen losses from the soil/plant system: a review , 2013 .
[72] P. Barbieri,et al. Nitrogen Balance as Affected by Application Time and Nitrogen Fertilizer Rate in Irrigated No‐Tillage Maize , 2004 .
[73] Earl D. Vories,et al. Corn response to nitrogen is influenced by soil texture and weather , 2012 .
[74] Fernando E. Miguez,et al. Nonlinear Regression Models and Applications in Agricultural Research , 2015 .
[75] Robert J. Naiman,et al. Soil texture and nitrogen mineralization potential across a riparian toposequence in a semi-arid savanna , 2006 .
[76] K. Paustian,et al. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils , 2002, Plant and Soil.
[77] David R. Anderson,et al. Model Selection and Inference: A Practical Information-Theoretic Approach , 2001 .
[78] R. Lavado,et al. Late season nitrogen fertilization of soybeans: effects on leaf senescence, yield and environment , 2004, Nutrient Cycling in Agroecosystems.
[79] H. Echeverría,et al. Dosis óptima económica de nitrógeno en maíz bajo siembra directa en el sudeste bonaerense , 2008 .
[80] A. Dobermann,et al. Emerging Technologies to Increase the Efficiency of Use of Fertilzer Nitrogen , 2004 .
[81] M. Bell,et al. Soil nitrogen—crop response calibration relationships and criteria for winter cereal crops grown in Australia , 2013, Crop and Pasture Science.
[82] L. Bundy,et al. An Alternative Rationale for Corn Nitrogen Fertilizer Recommendations , 1994 .
[83] A. Dobermann,et al. Agroecosystems, Nitrogen-use Efficiency, and Nitrogen Management , 2002, Ambio.
[84] A. Dobermann,et al. Nutrient use efficiency - measurement and management. , 2007 .
[85] Larry G. Bundy,et al. Soil Yield Potential Effects on Performance of Soil Nitrate Tests , 1995 .
[86] Kenneth G. Cassman,et al. Meeting Cereal Demand While Protecting Natural Resources and Improving Environmental Quality , 2003 .
[87] Charles S. Wortmann,et al. Nitrogen Response and Economics for Irrigated Corn in Nebraska , 2011 .
[88] W. Wieder,et al. Addressing agricultural nitrogen losses in a changing climate , 2018, Nature Sustainability.