Life–prediction for constant–stress fatigue in carbon–fibre composites

A detailed analysis has been carried out of the strength and fatigue behaviour under constant–stress cycling of four modern aerospace CFRP laminates, all having the common lay–up [(±45,02)2]s. Despite some important differences in their basic material characteristics, the fatigue responses of the four materials were similar. This pattern of behaviour has resulted in the development of a descriptive model of constant–life fatigue which has then been used as the basis for a life–prediction procedure. Preliminary attempts at validation of the method have met with a reasonable degree of success and suggest that it could provide designers with a means of selecting newly developed composites for fatigue applications on the basis of far less experimental data than are currently needed for confidence in design.

[1]  P. Curtis An Investigation of the Mechanical Properties of Improved Carbon Fibre Composite Materials , 1987 .

[2]  W. Weibull CHAPTER II – FATIGUE TESTING METHODS , 1961 .

[3]  D. Schütz,et al.  Fatigue strength of a fibre-reinforced material , 1977 .

[4]  E. Gumbel,et al.  Statistics of extremes , 1960 .

[5]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[6]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[7]  R. Talreja,et al.  Fatigue of composite materials: damage mechanisms and fatigue-life diagrams , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[9]  Gerard Franklyn Fernando,et al.  Fatigue behaviour of carbon fibre reinforced plastics , 1990 .

[10]  T. Adam,et al.  Life prediction for fatigue of T800/5245 carbon-fibre composites: I. Constant-amplitude loading , 1994 .

[11]  K. Grace,et al.  Probabilistic Reliability: An Engineering Approach , 1968 .

[12]  A. M. Freudenthal,et al.  Minimum Life in Fatigue , 1954 .

[13]  Gerard Franklyn Fernando,et al.  Fatigue life prediction for hybrid composites , 1989 .

[14]  A. M. Freudenthal,et al.  On the statistical interpretation of fatigue tests , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  Michael J. Maher,et al.  Statistics for Technology. , 1979 .

[16]  Kl Reifsnider,et al.  Fatigue of Filamentary Composite Materials , 1977 .

[17]  A. Huitson,et al.  Statistical Models in Applied Science. , 1976 .

[18]  Ramesh Talreja,et al.  Estimation of Weibull Parameters for Composite Material Strength and Fatigue Life Data , 1981 .

[19]  J. C. Cluley,et al.  Probabilistic Reliability: an Engineering Approach , 1968 .

[20]  T. Adam,et al.  Fatigue behaviour of hybrid composites , 1988 .

[21]  A. M. Freudenthal,et al.  Physical and Statistical Aspects of Fatigue , 1956 .

[22]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[23]  Benjamin Epstein,et al.  Statistical Aspects of Fracture Problems , 1948 .

[24]  Ramesh Talreja,et al.  Fatigue of composite materials , 1987 .

[25]  C. Cunnane Unbiased plotting positions — A review , 1978 .

[26]  Kenneth Reifsnider,et al.  Fatigue of composite materials , 1991 .

[27]  Sigmund J. Amster,et al.  The Statistical Treatment of Fatigue Experiments , 1964 .

[28]  Enrique Castillo Extreme value theory in engineering , 1988 .

[29]  T. Adam,et al.  A Power Law Fatigue Damage Model for Fibre-Reinforced Plastic Laminates , 1986 .

[30]  Re Little,et al.  Statistical Analysis of Fatigue Data , 1981 .

[31]  S. Nishijima Statistical analysis of small sample fatigue data , 1985 .