TiO₂ nanotubes sensitized with CdSe via RF magnetron sputtering for photoelectrochemical applications under visible light irradiation.

Highly ordered TiO2 NT arrays were easily decorated with CdSe via RF magnetron sputtering. After deposition thermal annealing at different temperatures was performed to obtain an improved TiO2/CdSe interface. The heterostructures were characterized by RBS, SEM, XRD, HRTEM, UV-Vis, EIS, IPCE and current versus voltage curves. The sensitized semiconducting electrodes display an enhanced photocurrent density of ca. 2 mA cm(-2) at 0.6 V (vs. Ag/AgCl) under visible light (λ > 400 nm). The sensitized photoelectrodes displayed 3 and 535-fold enhanced photocurrent when compared to bare TiO2 NTs under 1 sun and under visible light illumination, respectively. IES results confirmed the improved charge transfer across the TiO2/CdSe/electrolyte interface after annealing at 400 °C. Incident photon-to-electron conversion efficiency measurements confirmed the efficient sensitization by allowing photoresponse in the visible range.

[1]  M. Kang,et al.  Enhanced photo-conversion efficiency of CdSe–ZnS core–shell quantum dots with Au nanoparticles on TiO2 electrodes , 2011 .

[2]  V. K. Mahajan,et al.  Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-xCx Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode , 2007 .

[3]  N. Chouhan,et al.  Photocatalytic CdSe QDs-decorated ZnO nanotubes: an effective photoelectrode for splitting water. , 2011, Chemical communications.

[4]  S. Nishiwaki,et al.  Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells , 2001 .

[5]  Somnath C. Roy,et al.  Synthesis and applications of electrochemically self-assembled titania nanotube arrays. , 2010, Physical chemistry chemical physics : PCCP.

[6]  Feng Zhou,et al.  Polymer brushes assisted loading of high density CdS/CdSe quantum dots onto TiO2 nanotubes and the resulting photoelectric performance , 2012 .

[7]  Ji‐Hyun Jang,et al.  Towards Visible Light Hydrogen Generation: Quantum Dot-Sensitization via Efficient Light Harvesting of Hybrid-TiO2 , 2013, Scientific Reports.

[8]  G. Andersson,et al.  On the correlation between dye coverage and photoelectrochemical performance in dye-sensitized solar cells. , 2014, Physical chemistry chemical physics : PCCP.

[9]  Lianmao Peng,et al.  Hybrid CdSe/TiO2 nanowire photoelectrodes: Fabrication and photoelectric performance , 2011 .

[10]  I. Repins,et al.  19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .

[11]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[12]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[13]  R. Mane,et al.  CdS buffer-layer free highly efficient ZnO-CdSe photoelectrochemical cells , 2012 .

[14]  A. Romeo,et al.  The second‐generation of CdTe and CuInGaSe2 thin film PV modules , 2011 .

[15]  M. Behar,et al.  Ranges in Si and lighter mono and multi-element targets , 1995 .

[16]  Xinbin Ma,et al.  Branched TiO2 nanoarrays sensitized with CdS quantum dots for highly efficient photoelectrochemical water splitting. , 2013, Physical chemistry chemical physics : PCCP.

[17]  Jun-Ho Yum,et al.  Panchromatic engineering for dye-sensitized solar cells , 2011 .

[18]  Juan Bisquert,et al.  CdSe Quantum Dot-Sensitized TiO2 Electrodes: Effect of Quantum Dot Coverage and Mode of Attachment , 2009 .

[19]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[20]  A. Bard,et al.  Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. , 2006, Nano letters.

[21]  H. K. Jun,et al.  Performances of some low-cost counter electrode materials in CdS and CdSe quantum dot-sensitized solar cells , 2014, Nanoscale Research Letters.

[22]  Jennifer K. Hensel,et al.  Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO(2) nanostructures for photoelectrochemical solar hydrogen generation. , 2010, Nano letters.

[23]  Titanium nanotubes grown by titanium anodization , 2009 .

[24]  J. Reber,et al.  Photochemical hydrogen production with cadmium sulfide suspensions , 1984 .

[25]  Craig A. Grimes,et al.  TiO2 Nanotube Arrays: Synthesis, Properties, and Applications , 2009 .

[26]  C. Grimes,et al.  P-type Cu--Ti--O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. , 2008, Nano letters.

[27]  J. Bisquert,et al.  Equivalent Circuit of Electrons and Holes in Thin Semiconductor Films for Photoelectrochemical Water Splitting Applications. , 2012, The journal of physical chemistry letters.

[28]  Jong Hyeok Park,et al.  CdS or CdSe decorated TiO2 nanotube arrays from spray pyrolysis deposition: use in photoelectrochemical cells. , 2010, Chemical communications.

[29]  Kouji Yasuda,et al.  TiO2 nanotubes: Self-organized electrochemical formation, properties and applications , 2007 .

[30]  Craig A. Grimes,et al.  TiO2 Nanotube Arrays , 2009 .

[31]  Yanfa Yan,et al.  Fabrication and characterization of high-efficiency CdTe-based thin-film solar cells on commercial SnO2:F-coated soda-lime glass substrates , 2013 .

[32]  Yuh‐Lang Lee,et al.  The heat annealing effect on the performance of CdS/CdSe-sensitized TiO2 photoelectrodes in photochemical hydrogen generation , 2010, Nanotechnology.

[33]  Jong Hyeok Park,et al.  The preparation of highly ordered TiO2 nanotube arrays by an anodization method and their applications. , 2012, Chemical communications.

[34]  V. Subramanian,et al.  TiO2 nanotube (T_NT) surface treatment revisited: Implications of ZnO, TiCl4, and H2O2 treatment on the photoelectrochemical properties of T_NT and T_NT-CdSe. , 2013, Nanoscale.

[35]  Lianmao Peng,et al.  Photoelectric performance of TiO2 nanotube array photoelectrodes cosensitized with CdS/CdSe quantum dots , 2010 .

[36]  A. Rogach,et al.  Heterojunction Engineering of CdTe and CdSe Quantum Dots on TiO2 Nanotube Arrays: Intricate Effects of Size‐Dependency and Interfacial Contact on Photoconversion Efficiencies , 2012 .

[37]  V. Subramanian,et al.  CdSe Nanocrystal Assemblies on Anodized TiO2 Nanotubes: Optical, Surface, and Photoelectrochemical Properties , 2012 .

[38]  Ying Li,et al.  Biopolymer-Activated Graphitic Carbon Nitride towards a Sustainable Photocathode Material , 2013, Scientific Reports.

[39]  D. Zhao,et al.  Controlled Sn-doping in TiO2 nanowire photoanodes with enhanced photoelectrochemical conversion. , 2012, Nano letters.