Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries

[1]  G. Lindbergh,et al.  Li4Ti5O12 flexible, lightweight electrodes based on cellulose nanofibrils as binder and carbon fibers as current collectors for Li-ion batteries , 2017 .

[2]  Byeong‐Su Kim,et al.  Electrophoretic deposition of aramid nanofibers on carbon fibers for highly enhanced interfacial adhesion at low content , 2016 .

[3]  Weidong He,et al.  Highly Efficient Materials Assembly Via Electrophoretic Deposition for Electrochemical Energy Conversion and Storage Devices , 2016 .

[4]  G. Lindbergh,et al.  High Precision Coulometry of Commercial PAN-Based Carbon Fibers as Electrodes in Structural Batteries , 2016 .

[5]  Jim Benson,et al.  Carbon Nanotube-CoF2 Multifunctional Cathode for Lithium Ion Batteries: Effect of Electrolyte on Cycle Stability. , 2015, Small.

[6]  Da Deng,et al.  Li‐ion batteries: basics, progress, and challenges , 2015 .

[7]  Gleb Yushin,et al.  Chemical vapor deposition and atomic layer deposition for advanced lithium ion batteries and supercapacitors , 2015 .

[8]  Yanglong Hou,et al.  Electrophoretic lithium iron phosphate/reduced graphene oxide composite for lithium ion battery cathode application , 2015 .

[9]  Qian Sun,et al.  Rational Design of Atomic‐Layer‐Deposited LiFePO4 as a High‐Performance Cathode for Lithium‐Ion Batteries , 2014, Advanced materials.

[10]  G. Lindbergh,et al.  The effect of lithium-intercalation on the mechanical properties of carbon fibres , 2014 .

[11]  Gleb Yushin,et al.  High‐Capacity Anode Materials for Lithium‐Ion Batteries: Choice of Elements and Structures for Active Particles , 2014 .

[12]  K. Nishimura,et al.  Lithium manganese aluminum oxide-based full Li-ion battery using carbon fibers as current collectors , 2013, Ionics.

[13]  Jeom-Soo Kim,et al.  Capacity fading mechanism of LiFePO4-based lithium secondary batteries for stationary energy storage , 2013 .

[14]  L. Asp,et al.  Multifunctional composite materials for energy storage in structural load paths , 2013 .

[15]  M. Behm,et al.  Electrochemical Characterization of Lithium Intercalation Processes of PAN-Based Carbon Fibers in a Microelectrode System , 2013 .

[16]  Erik T. Thostenson,et al.  Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties , 2012 .

[17]  U. Helmersson,et al.  High power impulse magnetron sputtering discharge , 2012 .

[18]  Diana Golodnitsky,et al.  Electrophoretic deposition of lithium iron phosphate cathode for thin-film 3D-microbatteries , 2012 .

[19]  N. Dudney,et al.  Electrochemical Stability of Carbon Fibers Compared to Aluminum as Current Collectors for Lithium-Ion Batteries , 2012 .

[20]  N. Dudney,et al.  Advanced Lithium Battery Cathodes Using Dispersed Carbon Fibers as the Current Collector , 2011 .

[21]  Dan Zenkert,et al.  PAN-Based Carbon Fiber Negative Electrodes for Structural Lithium-Ion Batteries , 2011 .

[22]  A. J. Smith,et al.  A High Precision Study of the Coulombic Efficiency of Li-Ion Batteries , 2010 .

[23]  M. Wysocki,et al.  Structural batteries made from fibre reinforced composites , 2010 .

[24]  S. Trussler,et al.  Precision Measurements of the Coulombic Efficiency of Lithium-Ion Batteries and of Electrode Materials for Lithium-Ion Batteries , 2010 .

[25]  Eric D. Wetzel,et al.  Improving multifunctional behavior in structural electrolytes through copolymerization of structure- and conductivity-promoting monomers , 2009 .

[26]  Feng Li,et al.  Field Emission of Single‐Layer Graphene Films Prepared by Electrophoretic Deposition , 2009 .

[27]  Elena Sherman,et al.  Design and fabrication of multifunctional structural batteries , 2009 .

[28]  James F. Snyder,et al.  Evaluation of Commercially Available Carbon Fibers, Fabrics, and Papers for Potential Use in Multifunctional Energy Storage Applications , 2009 .

[29]  Shengbo Zhang A review on the separators of liquid electrolyte Li-ion batteries , 2007 .

[30]  T. Abe,et al.  Electrochemical properties of LiFePO4 thin films prepared by pulsed laser deposition , 2005 .

[31]  K. Zaghib,et al.  Effect of Carbon Source as Additives in LiFePO4 as Positive Electrode for Lithium-Ion Batteries , 2005 .

[32]  T. Umegaki,et al.  Electrophoretic fabrication of LiCoO2 positive electrodes for rechargeable lithium batteries , 2001 .

[33]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[34]  N. Koura,et al.  Preparation of Various Oxide Films by an Electrophoretic Deposition Method: A Study of the Mechanism , 1995 .