Sparse Stochastic Processes and Discretization of Linear Inverse Problems

We present a novel statistically-based discretization paradigm and derive a class of maximum a posteriori (MAP) estimators for solving ill-conditioned linear inverse problems. We are guided by the theory of sparse stochastic processes, which specifies continuous-domain signals as solutions of linear stochastic differential equations. Accordingly, we show that the class of admissible priors for the discretized version of the signal is confined to the family of infinitely divisible distributions. Our estimators not only cover the well-studied methods of Tikhonov and l1-type regularizations as particular cases, but also open the door to a broader class of sparsity-promoting regularization schemes that are typically nonconvex. We provide an algorithm that handles the corresponding nonconvex problems and illustrate the use of our formalism by applying it to deconvolution, magnetic resonance imaging, and X-ray tomographic reconstruction problems. Finally, we compare the performance of estimators associated with models of increasing sparsity.

[1]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[2]  José M. Bioucas-Dias,et al.  An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems , 2009, IEEE Transactions on Image Processing.

[3]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[4]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[5]  Michael Unser,et al.  Wavelet Shrinkage With Consistent Cycle Spinning Generalizes Total Variation Denoising , 2012, IEEE Signal Processing Letters.

[6]  F. Steutel,et al.  Infinite Divisibility of Probability Distributions on the Real Line , 2003 .

[7]  Michael Unser,et al.  Left-inverses of fractional Laplacian and sparse stochastic processes , 2010, Adv. Comput. Math..

[8]  Michael Unser,et al.  A unified formulation of Gaussian vs. sparse stochastic processes - Part II: Discrete-domain theory , 2011, ArXiv.

[9]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[10]  Jacques Froment,et al.  Constrained Total Variation Minimization and Application in Computerized Tomography , 2005, EMMCVPR.

[11]  Dianne P. O'Leary,et al.  Deblurring Images: Matrices, Spectra and Filtering , 2006, J. Electronic Imaging.

[12]  David P. Wipf,et al.  Iterative Reweighted 1 and 2 Methods for Finding Sparse Solutions , 2010, IEEE J. Sel. Top. Signal Process..

[13]  Michael I. Miller,et al.  Image reconstruction for 3D light microscopy with a regularized linear method incorporating a smoothness prior , 1993, Electronic Imaging.

[14]  Jing Wang,et al.  Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography , 2006, IEEE Transactions on Medical Imaging.

[15]  Richard G. Baraniuk,et al.  Wavelet statistical models and Besov spaces , 1999 .

[16]  M. Unser,et al.  The colored revolution of bioimaging , 2006, IEEE Signal Processing Magazine.

[17]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[18]  F. Schmitt,et al.  Linear inverse problems in imaging , 2008, IEEE Signal Processing Magazine.

[19]  Aggelos K. Katsaggelos,et al.  Bayesian Compressive Sensing Using Laplace Priors , 2010, IEEE Transactions on Image Processing.

[20]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[21]  Valentin Simeonov,et al.  École polytechnique fédérale de Lausanne (EPFL) , 2018, The Grants Register 2019.

[22]  H. L. Taylor,et al.  Deconvolution with the l 1 norm , 1979 .

[23]  Wotao Yin,et al.  Iteratively reweighted algorithms for compressive sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[24]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[25]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[26]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[27]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[28]  K. T. Block,et al.  Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint , 2007, Magnetic resonance in medicine.

[29]  Lewis D Griffin,et al.  Gradient direction dependencies in natural images. , 2007, Spatial vision.

[30]  Michael Unser,et al.  Bayesian Estimation for Continuous-Time Sparse Stochastic Processes , 2012, IEEE Transactions on Signal Processing.

[31]  Ken D. Sauer,et al.  A generalized Gaussian image model for edge-preserving MAP estimation , 1993, IEEE Trans. Image Process..

[32]  Armando Manduca,et al.  Highly Undersampled Magnetic Resonance Image Reconstruction via Homotopic $\ell_{0}$ -Minimization , 2009, IEEE Transactions on Medical Imaging.

[33]  Michael Elad,et al.  L1-L2 Optimization in Signal and Image Processing , 2010, IEEE Signal Processing Magazine.

[34]  Michael Unser,et al.  Compressibility of Deterministic and Random Infinite Sequences , 2011, IEEE Transactions on Signal Processing.

[35]  David Mumford,et al.  Statistics of natural images and models , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[36]  Jeffrey A. Fessler,et al.  Regularized parallel mri reconstruction using an alternating direction method of multipliers , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[37]  Amiel Feinstein,et al.  Applications of harmonic analysis , 1964 .

[38]  S. Mallat A wavelet tour of signal processing , 1998 .

[39]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[40]  Michael Unser,et al.  A unified formulation of Gaussian vs. sparse stochastic processes - Part I: Continuous-domain theory , 2011, ArXiv.

[41]  Michael Unser,et al.  A Box Spline Calculus for the Discretization of Computed Tomography Reconstruction Problems , 2012, IEEE Transactions on Medical Imaging.

[42]  Jianhong Shen,et al.  Deblurring images: Matrices, spectra, and filtering , 2007, Math. Comput..

[43]  J. Claerbout,et al.  Robust Modeling With Erratic Data , 1973 .

[44]  Josiane Zerubia,et al.  Richardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution , 2006, Microscopy research and technique.

[45]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[46]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[47]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[48]  Nick Kingsbury,et al.  FAST L0-based sparse signal recovery , 2010, 2010 IEEE International Workshop on Machine Learning for Signal Processing.