New monotone measure-based integrals inspired by scientific impact problem

In this paper, we define new functionals generalizing scientometric indices proposed by Mesiar and Gągolewski in 2016 to overcome some limitations of h-index. These functionals are integrals with respect to a monotone measure as well as aggregation functions under some mild conditions. We derive numerous properties of the new integrals and analyze subadditivity property in detail. We also give a partial solution to the problem posed by Mesiar and Stupňanova to find an algorithm for computing the pseudo-decomposition integral of n-th order based on operations $\oplus=+$ and $\odot=\wedge,$ which will be useful in multi-criteria decision problems.

[1]  G. Choquet Theory of capacities , 1954 .

[2]  Didier Dubois,et al.  Generalized qualitative Sugeno integrals , 2017, Inf. Sci..

[3]  C. Sempi,et al.  Semicopulæ , 2005, Kybernetika.

[4]  Fabio Spizzichino,et al.  Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes , 2005 .

[5]  Ondrej Hutník,et al.  The smallest semicopula-based universal integrals I: Properties and characterizations , 2015, Fuzzy Sets Syst..

[6]  Fiorenzo Franceschini,et al.  Analysis of the Hirsch index's operational properties , 2010, Eur. J. Oper. Res..

[7]  Vicenç Torra,et al.  The interpretation of fuzzy integrals and their application to fuzzy systems , 2006, Int. J. Approx. Reason..

[8]  Didier Dubois,et al.  Decision-Making with Sugeno Integrals , 2012, Order.

[9]  H. Bustince,et al.  Fusion functions based discrete Choquet-like integrals , 2016, Eur. J. Oper. Res..

[10]  F. García,et al.  Two families of fuzzy integrals , 1986 .

[11]  Miguel A. García-Pérez,et al.  A multidimensional extension to Hirsch’s h-index , 2009, Scientometrics.

[12]  Humberto Bustince,et al.  A Practical Guide to Averaging Functions , 2015, Studies in Fuzziness and Soft Computing.

[13]  Michal Boczek,et al.  On Chebyshev type inequalities for generalized Sugeno integrals , 2014, Fuzzy Sets Syst..

[14]  Antonio Quesada,et al.  Further characterizations of the Hirsch index , 2011, Scientometrics.

[15]  C. Sempi,et al.  Principles of Copula Theory , 2015 .

[16]  J. E. Hirsch,et al.  An index to quantify an individual's scientific research output , 2005, Proc. Natl. Acad. Sci. USA.

[17]  Ronald Rousseau,et al.  New developments related to the Hirsch index , 2006 .

[18]  G. Klir,et al.  Generalized Measure Theory , 2008 .

[19]  Loet Leydesdorff,et al.  A review of theory and practice in scientometrics , 2015, Eur. J. Oper. Res..

[20]  Radko Mesiar,et al.  Monotone measures and universal integrals in a uniform framework for the scientific impact assessment problem , 2014, Inf. Sci..

[21]  Gerhard J. Woeginger,et al.  An axiomatic characterization of the Hirsch-index , 2008, Math. Soc. Sci..

[22]  Adrian Miroiu,et al.  Axiomatizing the Hirsch index: Quantity and quality disjoined , 2013, J. Informetrics.

[23]  Radko Mesiar,et al.  Aggregating different paper quality measures with a generalized h-index , 2012, J. Informetrics.

[24]  Michal Boczek,et al.  On the Minkowski-Hölder type inequalities for generalized Sugeno integrals with an application , 2015, Kybernetika.

[25]  João Carlos Correia Baptista Soares de Mello,et al.  A multi-criteria approach to the h-index , 2019, Eur. J. Oper. Res..

[26]  Gerhard J. Woeginger,et al.  A new family of scientific impact measures: The generalized Kosmulski-indices , 2009, Scientometrics.

[27]  Radko Mesiar,et al.  H-Index and Other Sugeno Integrals: Some Defects and Their Compensation , 2016, IEEE Transactions on Fuzzy Systems.

[28]  Jun-Hai Zhai,et al.  Ensemble dropout extreme learning machine via fuzzy integral for data classification , 2018, Neurocomputing.

[29]  Michel Grabisch,et al.  Modeling attitudes toward uncertainty through the use of the Sugeno integral , 2008 .

[30]  Humberto Bustince,et al.  Directional monotonicity of fusion functions , 2015, Eur. J. Oper. Res..

[31]  Radko Mesiar,et al.  Sugeno Integrals, $H_\alpha$, and $H^\beta$ Indices: How to Compare Scientists From Different Academic Areas , 2020, IEEE Transactions on Fuzzy Systems.

[32]  Michal Boczek,et al.  On conditions under which some generalized Sugeno integrals coincide: A solution to Dubois' problem , 2017, Fuzzy Sets Syst..

[33]  Gerhard J. Woeginger,et al.  A symmetry axiom for scientific impact indices , 2008, J. Informetrics.

[34]  Vicenç Torra,et al.  The $h$-Index and the Number of Citations: Two Fuzzy Integrals , 2008, IEEE Transactions on Fuzzy Systems.

[35]  Radko Mesiar,et al.  Decomposition approaches to integration without a measure , 2015, Fuzzy Sets Syst..

[36]  Radko Mesiar,et al.  Decomposition integrals , 2013, Int. J. Approx. Reason..

[37]  Jun Kawabe,et al.  The bounded convergence in measure theorem for nonlinear integral functionals , 2015, Fuzzy Sets Syst..

[38]  Peter Struk,et al.  Extremal fuzzy integrals , 2006, Soft Comput..

[39]  Ludo Waltman,et al.  Generalizing the H- and G-Indices , 2008, J. Informetrics.

[40]  Miguel A. García-Pérez,et al.  An extension of the h index that covers the tail and the top of the citation curve and allows ranking researchers with similar h , 2012, J. Informetrics.

[41]  R. Mesiar,et al.  CHAPTER 33 – Monotone Set Functions-Based Integrals , 2002 .

[43]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .