Nonparametric frontier estimation from noisy data

A new nonparametric estimator of production frontiers is defined and studied when the data set of production units is contaminated by measurement error. The measurement error is assumed to be an additive normal random variable on the input variable, but its variance is unknown. The estimator is a modification of the m-frontier, which necessitates the computation of a consistent estimator of the conditional survival function of the input variable given the output variable. In this paper, the identification and the consistency of a new estimator of the survival function is proved in the presence of additive noise with unknown variance. The performance of the estimator is also studied through simulated data.

[1]  Sébastien Van Bellegem,et al.  Consistent Density Deconvolution under Partially Known Error Distribution , 2010 .

[2]  Y. Nesterov,et al.  Double smoothing technique for infinite-dimensional optimization problems with applications to optimal control , 2010 .

[3]  P. Hall,et al.  Estimating a Changepoint, Boundary, or Frontier in the Presence of Observation Error , 2002 .

[4]  Axel Gautier,et al.  Universal Service Financing in Competitive Postal Markets: One Size Does Not Fit All , 2011 .

[5]  P. Hall,et al.  Optimal Rates of Convergence for Deconvolving a Density , 1988 .

[6]  Lawrence M. Seiford,et al.  Recent developments in dea : the mathematical programming approach to frontier analysis , 1990 .

[7]  Yassine Lefouili,et al.  Leniency programs for multimarket firms: The effect of Amnesty Plus on cartel formation ☆ , 2012 .

[8]  Pierre Pestieau,et al.  The impact of a minimum pension on old age poverty and its budgetary cost. Evidence from Latin America , 2011 .

[9]  Alexander Meister,et al.  Deconvolving compactly supported densities , 2007 .

[10]  B. Park,et al.  THE FDH ESTIMATOR FOR PRODUCTIVITY EFFICIENCY SCORES , 2000, Econometric Theory.

[11]  Nicolas Gillis,et al.  A multilevel approach for nonnegative matrix factorization , 2010, J. Comput. Appl. Math..

[12]  Alexander Meister,et al.  DENSITY ESTIMATION WITH NORMAL MEASUREMENT ERROR WITH UNKNOWN VARIANCE , 2006 .

[13]  Tanguy Isaac,et al.  When frictions favour information revelation , 2010 .

[14]  Jean-Charles Lange,et al.  Design of a network of reusable logistic containers , 2010 .

[15]  J. Florens,et al.  Nonparametric frontier estimation: a robust approach , 2002 .

[16]  Laurence A. Wolsey,et al.  Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 4th International Conference, CPAIOR 2007, Brussels, Belgium, May 23-26, 2007, Proceedings , 2007, CPAIOR.

[17]  CONVERGENCE RATES FOR ILL-POSED INVERSE PROBLEMS WITH AN UNKNOWN OPERATOR , 2010, Econometric Theory.

[18]  Gerard Kerkyacharian,et al.  Wavelet deconvolution in a periodic setting , 2004 .

[19]  Yurii Nesterov,et al.  Solving Infinite-dimensional Optimization Problems by Polynomial Approximation , 2010 .

[20]  James Renegar,et al.  A mathematical view of interior-point methods in convex optimization , 2001, MPS-SIAM series on optimization.

[21]  Lars Stentoft,et al.  Multivariate Option Pricing with Time Varying Volatility and Correlations , 2010 .

[22]  Léopold Simar,et al.  How to improve the performances of DEA/FDH estimators in the presence of noise? , 2007 .

[23]  B. Vidakovic,et al.  Adaptive wavelet estimator for nonparametric density deconvolution , 1999 .

[24]  Daniel Bienstock,et al.  Potential Function Methods for Approximately Solving Linear Programming Problems: Theory and Practice , 2002 .

[25]  R. Färe,et al.  The measurement of efficiency of production , 1985 .

[26]  H. Uno Nested Potentials and Robust Equilibria Hiroshi Uno Nested Potentials and Robust Equilibria , 2011 .

[27]  Elena Del Rey,et al.  On Welfare Criteria and Optimality in an Endogenous Growth Model , 2010 .

[28]  Paul Belleflamme,et al.  Industrial Organization: Markets and Strategies , 2010 .

[29]  R. Shepherd Theory of cost and production functions , 1970 .

[30]  B. Park,et al.  A NOTE ON THE CONVERGENCE OF NONPARAMETRIC DEA ESTIMATORS FOR PRODUCTION EFFICIENCY SCORES , 1998, Econometric Theory.

[31]  Hervé Leleu,et al.  A linear programming framework for free disposal hull technologies and cost functions: Primal and dual models , 2006, Eur. J. Oper. Res..

[32]  Jacques-François Thisse,et al.  Economic Geography: The Integration of Regions and Nations , 2008 .

[33]  Jianqing Fan On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems , 1991 .

[34]  Léopold Simar,et al.  Semiparametric efficient estimation of AR(1) panel data models. , 2003 .

[35]  Density deconvolution in a two-level heteroscedastic model with unknown error density , 2010 .

[36]  P. Pestieau,et al.  Public Enterprise Economics.@@@The Performance of Public Enterprises: Concepts and Measurement. , 1987 .

[37]  Kristiaan Kerstens,et al.  A non-parametric Free Disposal Hull (FDH) approach to technical efficiency: an illustration of radial and graph efficiency measures and some sensitivity results , 1994 .

[38]  Catherine Matias,et al.  Minimax estimation of the noise level and of the deconvolution density in a semiparametric convolution model , 2005 .

[39]  Léopold Simar,et al.  Forecasting the Malmquist productivity index , 2010 .

[40]  Christian Gourieroux,et al.  Simulation-based econometric methods , 1996 .

[41]  Cheng Hsiao,et al.  Panel Data Models , 2007 .

[42]  Jérémie Bigot,et al.  Log‐density Deconvolution by Wavelet Thresholding , 2009 .

[43]  Koen Decancq,et al.  Copula-Based Orderings of Multivariate Dependence , 2010 .

[44]  Elena Molis,et al.  Experimental results on the roommate problem , 2010 .

[45]  Michael H. Neumann Deconvolution from panel data with unknown error distribution , 2007 .

[46]  J. Gabszewicz La différenciation des produits , 2006 .

[47]  Maík,et al.  NONPARAMETRIC FRONTIER ESTIMATION FROM NOISY DATA SCHWARZ , 2022 .

[48]  Thierry Bréchet,et al.  Technological greening, eco-efficiency and no-regret strategy , 2010 .

[49]  J. Rombouts,et al.  Option Pricing with Asymmetric Heteroskedastic Normal Mixture Models , 2010 .

[50]  Quang Vuong,et al.  Nonparametric estimation of the mea-surement eror model using multiple indicators , 1998 .

[51]  Yves Smeers,et al.  Stochastic Equilibrium Models for Generation Capacity Expansion , 2010 .

[52]  Andrea Silvestrini,et al.  Aggregation of exponential smoothing processes with an application to portfolio risk evaluation , 2013 .

[53]  J. Huriot,et al.  Economics of Cities , 2000 .

[54]  Alexander Meister,et al.  On deconvolution with repeated measurements , 2008 .

[55]  Rüdiger Stephan,et al.  An extension of disjunctive programming and its impact for compact tree formulations , 2010, 1007.1136.

[56]  Adaptivity in convolution models with partially known noise distribution , 2008, 0804.1056.