Eigenvalue inclusions via domain decomposition

We describe a method for the calculation of guaranteed bounds for the K lowest eigenvalues of second–order problems with Neumann boundary conditions. Using P2 approximations for the eigenfunctions and RT1 approximations for the gradients of the eigenfunctions in H(div, ω), an error bound for the eigenfunctions is established for weak approximations in H1(ω). In addition, the rest of the spectrum will be bounded by a domain decomposition method; the eigenvalue problem is decomposed step–by–step into simpler geometrical situations, where sufficient information on the spectrum is available.

[1]  H. Behnke,et al.  Inclusion of eigenvalues of general eigenvalue problems for matrices , 1988 .

[2]  H. Rentz-Reichert,et al.  UG – A flexible software toolbox for solving partial differential equations , 1997 .

[3]  U. Kulisch,et al.  Scientific Computing with Automatic Result Verification. , 1994 .

[4]  Wolfgang Hackbusch,et al.  Theorie und Numerik elliptischer Differentialgleichungen , 1986, Teubner Studienbücher.

[5]  Leonid Parnovski,et al.  Trapped modes in acoustic waveguides , 1998 .

[6]  D. V. Evans,et al.  Trapped modes in open channels , 1991, Journal of Fluid Mechanics.

[7]  F. Goerisch Ein Stufenverfahren zur Berechnung von Eigenwertschranken , 1987 .

[8]  Michael Plum Bounds for eigenvalues of second-order elliptic differential operators , 1991 .

[9]  Ulrich W. Kulisch,et al.  Numerical Toolbox for Verified Computing I , 1993 .

[10]  Christian Wieners The implementation of adaptive multigrid methods for finite elements , 1997 .

[11]  J. Berkowitz,et al.  On the discreteness of spectra of singular Sturm‐Liouville problems , 1959 .

[12]  E. Davies,et al.  One-parameter semigroups , 1980 .

[13]  E. B. Davies A hierarchical method for obtaining eigenvalue enclosures , 2000, Math. Comput..

[14]  Peter Bastian,et al.  Parallele adaptive Mehrgitterverfahren , 1994 .

[15]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[16]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.