Two Retinotopic Visual Areas in Human Lateral Occipital Cortex

We describe two visual field maps, lateral occipital areas 1 (LO1) and 2 (LO2), in the human lateral occipital cortex between the dorsal part of visual area V3 and visual area V5/MT+. Each map contained a topographic representation of the contralateral visual hemifield. The eccentricity representations were shared with V1/V2/V3. The polar angle representation in LO1 extended from the lower vertical meridian (at the boundary with dorsal V3) through the horizontal to the upper vertical meridian (at the boundary with LO2). The polar angle representation in LO2 was the mirror-reversal of that in LO1. LO1 and LO2 overlapped with the posterior part of the object-selective lateral occipital complex and the kinetic occipital region (KO). The retinotopy and functional properties of LO1 and LO2 suggest that they correspond to two new human visual areas, which lack exact homologues in macaque visual cortex. The topography, stimulus selectivity, and anatomical location of LO1 and LO2 indicate that they integrate shape information from multiple visual submodalities in retinotopic coordinates.

[1]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[2]  S. Zeki,et al.  Convergent input from the striate cortex (area 17) to the cortex of the superior temporal sulcus in the rhesus monkey. , 1971, Brain research.

[3]  S. Zeki,et al.  Colour coding in the superior temporal sulcus of rhesus monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[4]  C. Gross,et al.  Visual topography of V2 in the macaque , 1981, The Journal of comparative neurology.

[5]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[6]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.

[7]  C. Gross,et al.  Visuotopic organization and extent of V3 and V4 of the macaque , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[9]  S. Ogawa Brain magnetic resonance imaging with contrast-dependent oxygenation , 1990 .

[10]  Leslie G. Ungerleider,et al.  Visual topography of area TEO in the macaque , 1991, The Journal of comparative neurology.

[11]  P. Prioreschi A history of medicine: primitive and ancient medicine. , 1991, Mellen history of medicine.

[12]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[14]  J. Horton,et al.  The representation of the visual field in human striate cortex. A revision of the classic Holmes map. , 1991, Archives of ophthalmology.

[15]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[16]  Nicholas I. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[17]  E C Wong,et al.  Processing strategies for time‐course data sets in functional mri of the human brain , 1993, Magnetic resonance in medicine.

[18]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[19]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[20]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[21]  R. Tootell,et al.  Anatomical evidence for MT and additional cortical visual areas in humans. , 1995, Cerebral cortex.

[22]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[23]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  J. Kaas,et al.  Topographic patterns of V2 cortical connections in macaque monkeys , 1996, The Journal of comparative neurology.

[25]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[26]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[27]  M. D’Esposito,et al.  Empirical Analyses of BOLD fMRI Statistics , 1997, NeuroImage.

[28]  G. Orban,et al.  The kinetic occipital region in human visual cortex. , 1997, Cerebral cortex.

[29]  G. Orban,et al.  The kinetic occipital (KO) region in man: an fMRI study. , 1997, Cerebral cortex.

[30]  M. D’Esposito,et al.  Empirical Analyses of BOLD fMRI Statistics , 1997, NeuroImage.

[31]  M. D’Esposito,et al.  Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions. , 1997, NeuroImage.

[32]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[33]  S. Edelman,et al.  Human Brain Mapping 6:316–328(1998) � A Sequence of Object-Processing Stages Revealed by fMRI in the Human Occipital Lobe , 2022 .

[34]  J. Hennig,et al.  The Processing of First- and Second-Order Motion in Human Visual Cortex Assessed by Functional Magnetic Resonance Imaging (fMRI) , 1998, The Journal of Neuroscience.

[35]  S. Edelman,et al.  Cue-Invariant Activation in Object-Related Areas of the Human Occipital Lobe , 1998, Neuron.

[36]  R. Weisskoff,et al.  Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel‐level false‐positive rates in fMRI , 1998, Human brain mapping.

[37]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[38]  A. Dale,et al.  Functional analysis of primary visual cortex (V1) in humans. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[39]  A. Dale,et al.  The Representation of Illusory and Real Contours in Human Cortical Visual Areas Revealed by Functional Magnetic Resonance Imaging , 1999, The Journal of Neuroscience.

[40]  Brian A Wandell,et al.  Perceived Speed of Colored Stimuli , 1999, Neuron.

[41]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[42]  D J Heeger,et al.  Robust multiresolution alignment of MRI brain volumes , 2000, Magnetic resonance in medicine.

[43]  Talma Hendler,et al.  Center–periphery organization of human object areas , 2001, Nature Neuroscience.

[44]  Jonas Larsson,et al.  Imaging vision : Functional mapping of intermediate visual processes in man , 2001 .

[45]  A. T. Smith,et al.  Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex. , 2001, Cerebral cortex.

[46]  Z Kourtzi,et al.  Representation of Perceived Object Shape by the Human Lateral Occipital Complex , 2001, Science.

[47]  M. Preul The Human Brain: Surface, Blood Supply, and Three-Dimensional Sectional Anatomy , 2001 .

[48]  J. Kaas,et al.  Visual cortex organization in primates: theories of V3 and adjoining visual areas. , 2001, Progress in brain research.

[49]  Alex R. Wade,et al.  Visual areas and spatial summation in human visual cortex , 2001, Vision Research.

[50]  N. Kanwisher,et al.  The lateral occipital complex and its role in object recognition , 2001, Vision Research.

[51]  R. Tootell,et al.  Where is 'dorsal V4' in human visual cortex? Retinotopic, topographic and functional evidence. , 2001, Cerebral cortex.

[52]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[53]  D. Heeger,et al.  Retinotopy and Functional Subdivision of Human Areas MT and MST , 2002, The Journal of Neuroscience.

[54]  Danny Keogan,et al.  Distributed hierarchical processing , 2002, Photomask Japan.

[55]  N. Logothetis,et al.  Visual Areas in Macaque Cortex Measured Using Functional Magnetic Resonance Imaging , 2002, The Journal of Neuroscience.

[56]  Olivier P. Faugeras,et al.  The Retinotopic Organization of Primate Dorsal V4 and Surrounding Areas: A Functional Magnetic Resonance Imaging Study in Awake Monkeys , 2003, The Journal of Neuroscience.

[57]  N. Rubin,et al.  fMRI Activation in Response to Illusory Contours and Salient Regions in the Human Lateral Occipital Complex , 2003, Neuron.

[58]  Doris Y. Tsao,et al.  Faces and objects in macaque cerebral cortex , 2003, Nature Neuroscience.

[59]  Rafael Malach,et al.  Large-Scale Mirror-Symmetry Organization of Human Occipito-Temporal Object Areas , 2003, Neuron.

[60]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[61]  Bruno A Olshausen,et al.  Processing shape, motion and three-dimensional shape-from-motion in the human cortex. , 2003, Cerebral cortex.

[62]  D. L. Adams,et al.  A Precise Retinotopic Map of Primate Striate Cortex Generated from the Representation of Angioscotomas , 2003, The Journal of Neuroscience.

[63]  Doris Y. Tsao,et al.  Neuroimaging Weighs In: Humans Meet Macaques in “Primate” Visual Cortex , 2003, The Journal of Neuroscience.

[64]  Robert O. Duncan,et al.  Cortical Magnification within Human Primary Visual Cortex Correlates with Acuity Thresholds , 2003, Neuron.

[65]  S. Zeki,et al.  The processing of kinetic contours in the brain. , 2003, Cerebral cortex.

[66]  H. Bülthoff,et al.  Representation of the perceived 3-D object shape in the human lateral occipital complex. , 2003, Cerebral cortex.

[67]  G. Orban,et al.  Comparative mapping of higher visual areas in monkeys and humans , 2004, Trends in Cognitive Sciences.

[68]  D. Heeger,et al.  Topographic organization for delayed saccades in human posterior parietal cortex. , 2005, Journal of neurophysiology.

[69]  D. Heeger,et al.  Topographic maps of visual spatial attention in human parietal cortex. , 2005, Journal of neurophysiology.

[70]  Brian A Wandell,et al.  Visual field map clusters in human cortex , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[71]  Alex R. Wade,et al.  Visual field maps and stimulus selectivity in human ventral occipital cortex , 2005, Nature Neuroscience.

[72]  Svetlana S. Georgieva,et al.  Using Functional Magnetic Resonance Imaging to Assess Adaptation and Size Invariance of Shape Processing by Humans and Monkeys , 2005, The Journal of Neuroscience.

[73]  N. Rubin,et al.  Functionally distinct sub-regions in the lateral occipital complex revealed by fMRI responses to abstract 2-dimensional shapes and familiar objects , 2005 .

[74]  Alex R. Wade,et al.  Extended Concepts of Occipital Retinotopy , 2005 .

[75]  Dezhe Z. Jin,et al.  The Coordinated Mapping of Visual Space and Response Features in Visual Cortex , 2005, Neuron.

[76]  Brian A. Wandell,et al.  Predominantly extra-retinotopic cortical response to pattern symmetry , 2005, NeuroImage.

[77]  R. Gattass,et al.  Cortical visual areas in monkeys: location, topography, connections, columns, plasticity and cortical dynamics , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[78]  Iwona Stepniewska,et al.  Reappraisal of DL/V4 boundaries based on connectivity patterns of dorsolateral visual cortex in macaques. , 2005, Cerebral cortex.

[79]  M. Landy,et al.  Orientation-selective adaptation to first- and second-order patterns in human visual cortex. , 2006, Journal of neurophysiology.

[80]  Alex R. Wade,et al.  The specificity of cortical region KO to depth structure , 2006, NeuroImage.