Direction-of-arrival estimation by L1-norm principal components

Traditional subspace-based methods for direction-of-arrival (DoA) estimation rely on the L2-norm principal components (L2-PCs) of the sensor-array data. In view of the well-documented sensitivity of L2-PCs against outliers among the processed data (occurring in this case, e.g., due to intermittent directional jamming), we propose instead DoA estimation using outlier-resistant L1-norm principal components (L1-PCs) of the recorded snapshots. Our simulation studies illustrate that the proposed method exhibits (i) similar performance to conventional L2-PC-based DoA estimation, when the snapshot-data are nominal/clean, and (ii) significantly superior performance when part of the snapshots are corrupted.

[1]  Panos P. Markopoulos,et al.  Optimal Algorithms for L1-subspace Signal Processing , 2014, IEEE Transactions on Signal Processing.

[2]  Fred C. Schweppe,et al.  Sensor-array data processing for multiple-signal sources , 1968, IEEE Trans. Inf. Theory.

[3]  José H. Dulá,et al.  The L1-norm best-fit hyperplane problem , 2013, Appl. Math. Lett..

[4]  D.H. Johnson,et al.  The application of spectral estimation methods to bearing estimation problems , 1982, Proceedings of the IEEE.

[5]  Takeo Kanade,et al.  Robust L/sub 1/ norm factorization in the presence of outliers and missing data by alternative convex programming , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[6]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[7]  Chris H. Q. Ding,et al.  R1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization , 2006, ICML.

[8]  Anthony J. Weiss,et al.  On maximum-likelihood localization of coherent signals , 1996, IEEE Trans. Signal Process..

[9]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[10]  Xuelong Li,et al.  L1-Norm-Based 2DPCA , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[11]  Panos P. Markopoulos,et al.  Fast computation of the L1-principal component of real-valued data , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[12]  Michael J. Black,et al.  Robust Principal Component Analysis for Computer Vision , 2001, ICCV.

[13]  J. Billingsley,et al.  Ground Clutter Measurements for Surface-Sited Radar , 1993 .

[14]  J. Brooks,et al.  A Pure L1-norm Principal Component Analysis. , 2013, Computational statistics & data analysis.

[15]  Panos P. Markopoulos,et al.  L1-fusion: Robust linear-time image recovery from few severely corrupted copies , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[16]  Petre Stoica,et al.  MUSIC, maximum likelihood and Cramer-Rao bound: further results and comparisons , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[17]  Panos P. Markopoulos,et al.  Some Options for L1-subspace Signal Processing , 2013, ISWCS.

[18]  Dimitris A. Pados,et al.  Video background tracking and foreground extraction via L1-subspace updates , 2016, SPIE Commercial + Scientific Sensing and Imaging.

[19]  Wen-Jun Zeng,et al.  High-Resolution Multiple Wideband and Nonstationary Source Localization With Unknown Number of Sources , 2010, IEEE Transactions on Signal Processing.

[20]  E. Andersen,et al.  Two summation formulae for product sums of binomial coefficients , 1953 .

[21]  Josef A. Nossek,et al.  Unitary ESPRIT: how to obtain increased estimation accuracy with a reduced computational burden , 1995, IEEE Trans. Signal Process..

[22]  Dimitris A. Pados,et al.  Subspace Direction Finding With an Auxiliary-Vector Basis , 2007, IEEE Transactions on Signal Processing.

[23]  Wei Sun,et al.  A novel interference suppression scheme for global navigation satellite systems using antenna array , 2005, IEEE Journal on Selected Areas in Communications.

[24]  Petre Stoica,et al.  Maximum likelihood methods for direction-of-arrival estimation , 1990, IEEE Trans. Acoust. Speech Signal Process..

[25]  Philippe Forster,et al.  Performance Analysis of Covariance Matrix Estimates in Impulsive Noise , 2008, IEEE Transactions on Signal Processing.

[26]  R. Lacoss DATA ADAPTIVE SPECTRAL ANALYSIS METHODS , 1971 .

[27]  P. Stoica,et al.  Maximum Likelhood Methods for Direction-of- Arrival Estimation , 1990 .

[28]  J. Tropp,et al.  Two proposals for robust PCA using semidefinite programming , 2010, 1012.1086.

[29]  A.B. Gershman,et al.  Robust adaptive beamforming using worst-case performance optimization , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[30]  Petre Stoica,et al.  Direction finding in the presence of an intermittent interference , 2002, IEEE Trans. Signal Process..

[31]  Zhi-Quan Luo,et al.  Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem , 2003, IEEE Trans. Signal Process..

[32]  Nojun Kwak,et al.  Principal Component Analysis Based on L1-Norm Maximization , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Dimitris A. Pados,et al.  Compressed-Sensed-Domain L1-PCA Video Surveillance , 2016, IEEE Transactions on Multimedia.

[34]  Theodore S. Rappaport,et al.  Measurements and Models of Radio Frequency Impulsive Noise for Indoor Wireless Communications , 1993, IEEE J. Sel. Areas Commun..

[35]  Ying Liu,et al.  Face recognition with L1-norm subspaces , 2016, SPIE Commercial + Scientific Sensing and Imaging.

[36]  Feiping Nie,et al.  Robust Principal Component Analysis with Non-Greedy l1-Norm Maximization , 2011, IJCAI.

[37]  George N. Karystinos,et al.  Efficient computation of the binary vector that maximizes a rank-deficient quadratic form , 2010, IEEE Trans. Inf. Theory.

[38]  T. Kanade,et al.  Robust subspace computation using L1 norm , 2003 .

[39]  Chris H. Q. Ding,et al.  An efficient algorithm for L1-norm principal component analysis , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[40]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[41]  George N. Karystinos,et al.  Optimal Algorithms for Binary, Sparse, and L 1 -Norm Principal Component Analysis , 2014 .

[42]  Jean Pierre Delmas,et al.  Efficiency of subspace-based DOA estimators , 2007, Signal Process..

[43]  José H. Dulá,et al.  A pure L1L1-norm principal component analysis , 2013, Comput. Stat. Data Anal..

[44]  J. Humphreys Introduction to Lie Algebras and Representation Theory , 1973 .