Adjoint higher order sensitivities for fast full-wave optimization of microwave filters

For the first time, full-wave optimization exploiting adjoint Hessian matrices is applied to the design of microwave filters and transitions. The first- and second-order sensitivities of the scattering parameters are computed analytically using the adjoint network method (ANM). The mode-matching-based ANM is applied to the generalized scattering matrices of the different filter/transition components. Analytical gradient and Hessian matrices of differentiable objective functions are expressed in terms of the first- and second-order response adjoint sensitivities. Optimization techniques exploiting second-order information such as the Levenberg-Marquardt method are applied using the adjoint first- and second-order information. Significant acceleration is achieved using these techniques over gradient-based optimization techniques such as the Broyden-Fletcher-Goldfarb-Shanno method. The adjoint-based sensitivities are also exploited in efficient tolerance analysis of microwave filters

[1]  Kawthar A. Zaki,et al.  Stripline Transition to Ridge Waveguide Bandpass Filters , 2003 .

[2]  S. A. Meguid,et al.  Computer-Aided Analysis , 1987 .

[3]  O. Wing,et al.  Circuit design by minimization using the Hessian matrix , 1974 .

[4]  R. Fletcher Practical Methods of Optimization , 1988 .

[5]  G. Vasilescu,et al.  A new approach to sensitivity computation of microwave circuits , 1988, 1988., IEEE International Symposium on Circuits and Systems.

[6]  R. Rohrer The Generalized Adjoint Network and Network Sensitivities , 1969 .

[7]  John W. Bandler,et al.  Wave Sensitivities of Networks , 1972 .

[8]  M. Mongiardo,et al.  Automated design of corrugated feeds by the adjoint network method , 1997 .

[9]  John W. Bandler,et al.  Optimization Methods for Computer-Aided Design , 1969 .

[10]  M. Sablatash,et al.  Sensitivity invariants for scattering matrices , 1971, IEEE Transactions on Circuit Theory.

[11]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[12]  G. Vasilescu,et al.  Second-and third-order sensitivities of microwave circuits , 1989 .

[13]  Analytical Dielectric Constant Sensitivity of Ridge Waveguide Filters , 2006 .

[14]  M. Mongiardo,et al.  New efficient full wave optimization of microwave circuits by the adjoint network method , 1993, IEEE Microwave and Guided Wave Letters.

[15]  Rakesh Chadha,et al.  Computer Aided Design of Microwave Circuits , 1978 .

[16]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[17]  Wojciech Ostrowski,et al.  Computer-Aided Analysis, Modeling, and Design of Microwave Networks: The Wave Approach , 1996 .

[18]  John W. Bandler,et al.  Practical Least pth Optimization of Networks , 1972 .

[19]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[20]  Paolo Tiberio,et al.  Computer-Aided Analysis of Microwave Circuits , 1974 .

[21]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[22]  Philip E. Gill,et al.  Practical optimization , 1981 .

[23]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.