Software aging and multifractality of memory resources

We investigate the dynamics of monitored memory resource utilizations in an operating system under stress using quantitative methods of fractal analysis. In the experiments, we recorded the time series representing various memory related parameters of the operating system. We observed that parameters demonstrate clear multifractal behavior. The degree of fractality of these time series tends to increase as the system workload increases. We conjecture that the H¨ older exponent that measures the local rate of fractality may be used as a quantitative measure of software aging. We propose a simple proactive computer crash avoidance strategy based on the online fractal analysis of system memory resource observations.

[1]  Y. Meyer,et al.  Construction of Continuous Functions with Prescribed Local Regularity , 1998 .

[2]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[3]  Stéphane Jaffard,et al.  Multifractal formalism for functions part II: self-similar functions , 1997 .

[4]  Michèle Basseville,et al.  Detection of abrupt changes: theory and application , 1993 .

[5]  Kishor S. Trivedi,et al.  A measurement-based model for estimation of resource exhaustion in operational software systems , 1999, Proceedings 10th International Symposium on Software Reliability Engineering (Cat. No.PR00443).

[6]  C. Peng,et al.  Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. , 1996, The American journal of physiology.

[7]  Kishor S. Trivedi,et al.  A methodology for detection and estimation of software aging , 1998, Proceedings Ninth International Symposium on Software Reliability Engineering (Cat. No.98TB100257).

[8]  Kishor S. Trivedi,et al.  Proactive management of software aging , 2001, IBM J. Res. Dev..

[9]  David Lorge Parnas,et al.  Software aging , 1994, Proceedings of 16th International Conference on Software Engineering.

[10]  Walter Willinger,et al.  On the Self-Similar Nature of Ethernet Traffic ( extended version ) , 1995 .

[11]  Jacques Lévy Véhel,et al.  Speech Signal Modeling Based on Local Regularity Analysis , 1995 .

[12]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[13]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[14]  Zbigniew R. Struzik,et al.  Revealing local variability properties of human heartbeat intervals with the local effective Hölder exponent , 2000 .

[15]  Yennun Huang,et al.  Software rejuvenation: analysis, module and applications , 1995, Twenty-Fifth International Symposium on Fault-Tolerant Computing. Digest of Papers.

[16]  Sachin Garg,et al.  Towards Performability Modeling of Software Rejuvenation , 1996 .

[17]  Joëlle Thollot,et al.  Modeling fractal shapes using generalisations of IFS techniques , 1997 .

[18]  I. Good,et al.  Fractals: Form, Chance and Dimension , 1978 .

[19]  K. Daoudi,et al.  Generalized IFS for signal processing , 1996, 1996 IEEE Digital Signal Processing Workshop Proceedings.

[20]  Tadashi Dohi,et al.  Statistical non-parametric algorithms to estimate the optimal software rejuvenation schedule , 2000, Proceedings. 2000 Pacific Rim International Symposium on Dependable Computing.

[21]  Andreas Reuter,et al.  Transaction Processing: Concepts and Techniques , 1992 .

[22]  Laurent E. Calvet,et al.  Large Deviations and the Distribution of Price Changes , 1997 .