Bulk growth and polarized spectral characters of Nd:LaCa4O(BO3)3 crystals

[1]  Xiaohan Chen,et al.  Porous nickel oxide micron polyhedral particles for high-performance ultrafast photonics , 2022, Optics & Laser Technology.

[2]  Cong Wang,et al.  Narrow-bandgap materials for optoelectronics applications , 2021, Frontiers of Physics.

[3]  Xiao-hui Li,et al.  A hydrazone organic optical modulator with a π electronic system for ultrafast photonics , 2021, Journal of Materials Chemistry C.

[4]  J. Soto-Crespo,et al.  Concurrent Passive Mode-Locked and Self-Q-Switched Operation in Laser Systems. , 2021, Physical review letters.

[5]  Zhiwei Lu,et al.  High-energy, nanosecond orange laser at 604 nm based on Pr:YLF crystal at room temperature , 2021, Results in Physics.

[6]  V. Klimov,et al.  Prospects and challenges of colloidal quantum dot laser diodes , 2021, Nature Photonics.

[7]  Hui-Fang Wu,et al.  Bifunctional Nd:CaSrNb2O7 crystal: A potential self-frequency-doubling laser material candidate , 2021 .

[8]  S. Mirov,et al.  High energy (0.8 J) mechanically Q-switched 2.94 μm Er:YAG laser. , 2021, Optics express.

[9]  Zhengping Wang,et al.  Dual‐Comb Femtosecond Solid‐State Laser with Inherent Polarization‐Multiplexing , 2020, Laser & Photonics Reviews.

[10]  K. Poeppelmeier,et al.  Borates: A Rich Source for Optical Materials. , 2020, Chemical reviews.

[11]  Xiao-hui Li,et al.  Emerging uniform Cu2O nanocubes for 251st harmonic ultrashort pulse generation , 2020 .

[12]  Zhengping Wang,et al.  Remarkable temperature-dependent second-harmonic-generation performance of a YCOB crystal. , 2020, Optics express.

[13]  G. Shan,et al.  Functional Porous MOF-Derived CuO Octahedra for Harmonic Soliton Molecule Pulses Generation , 2020 .

[14]  Xiaodong Xu,et al.  Efficient continuous-wave and passively Q-switched lasers based on disordered Nd:Ca0.7La0.3Al12O19 crystals , 2020 .

[15]  Hyun Su Kim,et al.  Optimization of a Passively Q-switched Yb:YAG Laser Ignitor Pumped by a Laser Diode with Low Power and Long Pulse Width , 2020 .

[16]  E. Castellano‐Hernández,et al.  Diode‐Pumped Laser Operation of Tb3+:LiLuF4 in the Green and Yellow Spectral Range , 2020, Laser & Photonics Reviews.

[17]  Ji-yang Wang,et al.  179  W continuous-wave self-frequency-doubled Nd:GdCOB laser , 2020 .

[18]  H. Zeng,et al.  Breathing dissipative solitons in mode-locked fiber lasers , 2019, Science Advances.

[19]  Huaidong Jiang,et al.  Effects of annealing on the structures and properties of Er,Yb:LuGdVO4 crystal , 2019, Results in Physics.

[20]  L. Gheorghe,et al.  Rise in power of Yb:YCOB for green light generation by self-frequency doubling. , 2016, Optics letters.

[21]  L. Gheorghe,et al.  Blue light production by type-I non-critical phase matching second-harmonic generation in La(Ca1−xSrx)4O(BO3)3 single crystals , 2015 .

[22]  Z. You,et al.  Output-coupling-dependent laser operation of monoclinic Yb:Ca4LaO(BO3)3 crystal. , 2013, Applied optics.

[23]  Zhengping Wang,et al.  Crystal growth and efficient second-harmonic-generation of the monoclinic LaCa4O(BO3)3 crystal , 2013 .

[24]  J. R. Vázquez de Aldana,et al.  Near-infrared lasers and self-frequency-doubling in Nd:YCOB cladding waveguides. , 2013, Optics express.

[25]  H. Schmidt,et al.  Growth and structure of Ca4La[O|(BO3)3] , 2011 .

[26]  T. Shrout,et al.  High temperature piezoelectric properties of yttrium calcium oxyborate single crystals , 2010 .

[27]  T. Fan,et al.  Power scaling of cryogenic Yb:LiYF(4) lasers. , 2010, Optics letters.

[28]  Lizhen Zhang,et al.  Growth, Thermal and Polarized Spectral Properties of Nd3+-Doped Gd1-xLaxCa4O(BO3)3 (x = 0.16 and 0.33) Crystals , 2008 .

[29]  Yi Lu,et al.  Growth and spectroscopic properties of Nd3+:LaCa4O(BO3)3 crystals , 2003 .

[30]  Huaidong Jiang,et al.  Optical and thermal properties of nonlinear optical crystal LaCa4O(BO3)3 , 2003 .

[31]  S. Payne,et al.  Nonlinear optical properties of LaCa(4)O(BO(3))(3). , 2001, Optics letters.

[32]  F. Balembois,et al.  Spectroscopic properties and laser performances of Yb:YCOB and potential of the Yb:LaCOB material , 2001 .

[33]  Huai-jin Zhang,et al.  Thermal, spectroscopic properties and laser performance at 1.06 and 1.33 μm of Nd : Ca4YO(BO3)3 and Nd : Ca4GdO(BO3)3 crystals , 2000 .

[34]  F. Balembois,et al.  Diode-pumped self-frequency-doubling Nd:GdCa 4 O(BO 3 ) 3 lasers: toward green microchip lasers , 2000 .

[35]  M. Richardson,et al.  Scaling of longitudinally diode-pumped self-frequency-doubling Nd:YCOB lasers , 2000, IEEE Journal of Quantum Electronics.

[36]  Yuk Tak Chow,et al.  Growth, spectra and influence of annealing effect on laser properties of Nd:YVO4 crystal , 2000 .

[37]  A. Kahn-Harari,et al.  Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB) , 1997 .

[38]  G. Boulon,et al.  Spectroscopy of a new laser garnet Lu3Sc2Ga3O12:Nd3+. Intensity luminescence characteristics, stimulated emission, and full set of squared reduced‐matrix elements |〈‖U(t)‖〉|2 for Nd3+ ions , 1994 .

[39]  B. Aull,et al.  Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections , 1982 .

[40]  K. Rajnak,et al.  Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+ , 1968 .