Flatness, Backstepping and Sliding Mode Controllers for Nonlinear Systems

Sliding mode control (SMC) is a powerful and robust control method. SMC methods have been widely studied in the last three decades from theoretical concepts to industrial applications [1]-[3]. Higher-order sliding mode controllers have recently been addressed to improve the system responses [1]. However, when designing a control for a plant it is sometimes more beneficial to use combined techniques, using SMC in conjunction with other methods such as backstepping, passivity, flatness and even other traditional control design methods including H ∞ , proportional-integral-derivative (PID) and self-tuning. Note that PID control design techniques may also be used for designing the sliding surface. A drawback of the SMC methods may be unwanted chattering resulting from discontinuous control. There are many methods which can be employed to reduce chattering, for example, using a continuous approximation of the discontinuous control, and a combination of continuous and discontinuous sliding mode controllers. Chattering may also be reduced using the higher-order SMC [4] and dynamic sliding mode control [4, 5].

[1]  Keith J. Burnham,et al.  Dynamic sliding mode control design , 2005 .

[2]  A. Isidori Nonlinear Control Systems , 1985 .

[3]  Petar V. Kokotovic,et al.  Tracking controllers for systems linear in the unmeasured states , 1995, Autom..

[4]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[5]  A. Zinober Variable Structure and Lyapunov Control , 1994 .

[6]  Riccardo Marino,et al.  Robust stabilization of feedback linearizable time-varying uncertain nonlinear systems, , 1993, Autom..

[7]  Philippe Martin,et al.  A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..

[8]  Arie Levant,et al.  Principles of 2-sliding mode design , 2007, Autom..

[9]  G. Silva-Navarro,et al.  Regulation and tracking for the average boost converter circuit: A generalized proportional integral approach , 2002 .

[10]  Tao Wang,et al.  Fuzzy sliding mode control for nonlinear systems , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[11]  F. Garofalo,et al.  Robust Control Via Variable Structure and Lyapunov Techniques , 1996 .

[12]  Sunil K. Agrawal,et al.  Differentially Flat Systems , 2004 .

[13]  M. Rios-Bolivar,et al.  Dynamical adaptive backstepping control design via symbolic computation , 1997, 1997 European Control Conference (ECC).

[14]  Y. H. Chen,et al.  Robust control design for a class of mismatched uncertain nonlinear systems , 1994 .

[15]  George Leitmann,et al.  On ultimate boundedness control of uncertain systems in the absence of matching assumptions , 1982 .

[16]  S. Behtash Robust output tracking for non-linear systems , 1990 .

[17]  M. Fliess,et al.  Continuous-time linear predictive control and flatness: A module-theoretic setting with examples , 2000 .

[18]  Changyun Wen,et al.  Robust output tracking for nonlinear uncertain systems , 1995 .

[19]  Alan S. I. Zinober,et al.  Dynamical sliding mode control via adaptive input-output linearization: A backstepping approach , 1996 .

[20]  Alan S. I. Zinober,et al.  Dynamical adaptive sliding mode control of observable minimum-phase uncertain nonlinear systems , 1999 .

[21]  I. Kanellakopoulos,et al.  Adaptive nonlinear control without overparametrization , 1992 .

[22]  Michel Fliess,et al.  Generalized controller canonical form for linear and nonlinear dynamics , 1990 .

[23]  Masayoshi Tomizuka,et al.  Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form , 1997, Autom..

[24]  A. S. I. Zinober,et al.  A symbolic computation toolbox for the design of dynamical adaptive nonlinear controllers , 1998 .

[25]  Alan S. I. Zinober,et al.  Adaptive Output Tracking Backstepping Sliding Mode Control of Nonlinear Systems , 2000 .

[26]  Manfredi Maggiore,et al.  Output feedback tracking: a separation principle approach , 2005, IEEE Transactions on Automatic Control.

[27]  M. Thoma,et al.  Variable Structure Systems, Sliding Mode and Nonlinear Control , 1999 .

[28]  M. Corless,et al.  Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems , 1981 .

[29]  J. Rudolph,et al.  Control of flat systems by quasi-static feedback of generalized states , 1998 .

[30]  V. Hagenmeyer,et al.  Exact feedforward linearization based on differential flatness , 2003 .

[31]  Z. Qu Global stabilization of nonlinear systems with a class of unmatched uncertainties , 1992, [Proceedings 1992] The First IEEE Conference on Control Applications.

[32]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[33]  S. Gutman Uncertain dynamical systems--A Lyapunov min-max approach , 1979 .

[34]  Ali J. Koshkouei,et al.  ADAPTIVE SLIDING BACKSTEPPING OF PARAMETRIC SEMI-STRICT FEEDBACK SYSTEMS WITH UNMATCHED UNCERTAINTY , 2000 .

[35]  Alan S. I. Zinober,et al.  DYNAMICAL ADAPTIVE SLIDING MODE OUTPUT TRACKING CONTROL OF A CLASS OF NONLINEAR SYSTEMS , 1997 .

[36]  Joachim Deutscher A linear differential operator approach to flatness based tracking for linear and non-linear systems , 2003 .

[37]  A. Levant Controlling output variables via higher order sliding modes , 1999, 1999 European Control Conference (ECC).

[38]  J. Lévine,et al.  On dynamic feedback linearization , 1989 .

[39]  Hebertt Sira-Ramírez,et al.  Dynamic second-order sliding mode control of the hovercraft vessel , 2002, IEEE Trans. Control. Syst. Technol..

[40]  A. Jafari Koshkouei,et al.  Adaptive Sliding Backstepping Control of Nonlinear Semi-Strict Feedback Form Systems , 1999 .

[41]  S. K. Spurgeon,et al.  A new sliding mode approach to asymptotic feedback linearisation with application to the control of non-flat systems , 1998 .

[42]  I. Kanellakopoulos,et al.  Systematic Design of Adaptive Controllers for Feedback Linearizable Systems , 1991, 1991 American Control Conference.