Lateral gene transfers and the evolution of eukaryotes: theories and data.

Vertical transmission of heritable material, a cornerstone of the Darwinian theory of evolution, is inadequate to describe the evolution of eukaryotes, particularly microbial eukaryotes. This is because eukaryotic cells and eukaryotic genomes are chimeric, having evolved through a combination of vertical (parent to offspring) and lateral (trans-species) transmission. Observations on widespread chimerism in eukaryotes have led to new and revised hypothesis for the origin and diversification of eukaryotes that provide specific predictions on the tempo (early vs continuous transfers) and mode (nature of donor and recipient lineages) of lateral gene transfers (LGTs). Analyses of available data indicate that LGTs in eukaryotes largely fall into two categories: (1) LGTs from organelles to the nucleus, only a few of which appear to have occurred at the time of the origin of eukaryotes, and (2) anomalous LGTs involving diverse donor and recipient lineages. Further testing of hypotheses on the origin and diversification of eukaryotes will require complete genome sequences from a number of diverse eukaryotes and prokaryotes combined with sequences of targeted genes from a broad phylogenetic sample.

[1]  W. Doolittle,et al.  Evidence that eukaryotic triosephosphate isomerase is of alpha-proteobacterial origin. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. Syvanen,et al.  Horizontal Gene Transfer , 2015, Evolution, Medicine, and Public Health.

[3]  J. Gogarten,et al.  Horizontal transfer of ATPase genes--the tree of life becomes a net of life. , 1993, Bio Systems.

[4]  James R. Brown,et al.  DNA Repair Systems in Archaea: Mementos from the Last Universal Common Ancestor? , 1999, Journal of Molecular Evolution.

[5]  J. Lawrence Gene transfer, speciation, and the evolution of bacterial genomes. , 1999, Current opinion in microbiology.

[6]  D. G. Lloyd,et al.  Molecular data suggest an early acquisition of the mitochondrion endosymbiont , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[7]  Purificación López-García,et al.  Symbiosis Between Methanogenic Archaea and δ-Proteobacteria as the Origin of Eukaryotes: The Syntrophic Hypothesis , 1998, Journal of Molecular Evolution.

[8]  L Margulis,et al.  The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[9]  H. Philippe,et al.  Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[10]  M. Sogin,et al.  Giardia lamblia expresses a proteobacterial-like DnaK homolog. , 2001, Molecular biology and evolution.

[11]  James R. Brown,et al.  Archaea and the prokaryote-to-eukaryote transition. , 1997, Microbiology and molecular biology reviews : MMBR.

[12]  F. Robb,et al.  Evolutionary relationships of bacterial and archaeal glutamine synthetase genes , 1994, Journal of Molecular Evolution.

[13]  M. W. Gray,et al.  Evolution of organellar genomes. , 1999, Current opinion in genetics & development.

[14]  W. Doolittle,et al.  Lateral genomics. , 1999, Trends in cell biology.

[15]  P. Keeling,et al.  SYMBIOTIC ORIGIN OF A NOVEL ACTIN GENE IN THE CRYPTOPHYTE, PYRENOMONAS HELGOLANDII , 2000, Molecular biology and evolution.

[16]  A. Roger,et al.  Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[17]  H. Philippe,et al.  Evidence for loss of mitochondria in Microsporidia from a mitochondrial-type HSP70 in Nosema locustae. , 1997, Molecular and biochemical parasitology.

[18]  T. Cavalier-smith A 6-Klngdom Classification And A Unified Phylogeny , 1983 .

[19]  D. Horner,et al.  Chaperonin 60 phylogeny provides further evidence for secondary loss of mitochondria among putative early-branching eukaryotes. , 2001, Molecular biology and evolution.

[20]  Andrew J. Roger,et al.  Reconstructing Early Events in Eukaryotic Evolution , 1999, The American Naturalist.

[21]  W. Martin,et al.  The hydrogen hypothesis for the first eukaryote , 1998, Nature.

[22]  Herrmann,et al.  Gene transfer from organelles to the nucleus: how much, what happens, and Why? , 1998, Plant Physiology.

[23]  C. Kurland,et al.  Origin and Evolution of the Mitochondrial Proteome , 2000, Microbiology and Molecular Biology Reviews.

[24]  Patrick J. Keeling,et al.  A kingdom's progress: Archezoa and the origin of eukaryotes , 1998 .

[25]  W. Martin,et al.  How do mitochondrial genes get into the nucleus? , 2001, Trends in genetics : TIG.

[26]  S. Garcia-Vallvé,et al.  Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. , 2000, Molecular biology and evolution.

[27]  W. Doolittle,et al.  Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J. Eisen Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. , 2000, Current opinion in genetics & development.

[29]  W. Doolittle,et al.  Are There Bugs in Our Genome? , 2001, Science.

[30]  A. Yoder,et al.  Phylogeny of the Lemuridae: Effects of Character and Taxon Sampling on Resolution of Species Relationships within Eulemur , 1999, Cladistics : the international journal of the Willi Hennig Society.

[31]  W. Doolittle,et al.  The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways , 2000, Molecular microbiology.

[32]  M. Klotz,et al.  Phylogenetic relationships among prokaryotic and eukaryotic catalases. , 1997, Molecular biology and evolution.

[33]  G. B. Golding,et al.  The origin of the eukaryotic cell. , 1996, Trends in biochemical sciences.

[34]  P. Simonet,et al.  Horizontal gene transfers in the environment: natural transformation as a putative process for gene transfers between transgenic plants and microorganisms. , 1999, Research in microbiology.

[35]  U. Stahl,et al.  Cells of the yeast Saccharomyces cerevisiae are transformable by DNA under non‐artificial conditions , 2000, Yeast.

[36]  F. Brinkman,et al.  Lateral gene transfer and metabolic adaptation in the human parasite Trichomonas vaginalis. , 2000, Molecular biology and evolution.

[37]  H. Kistler,et al.  Role of Horizontal Gene Transfer in the Evolution of Fungi. , 2000, Annual review of phytopathology.

[38]  H. Ochman,et al.  Molecular archaeology of the Escherichia coli genome. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M. Sogin,et al.  Primary Structure and Phylogenetic Relationships of a Malate Dehydrogenase Gene from Giardia lamblia , 1999, Journal of Molecular Evolution.

[40]  B. M. Lange,et al.  Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[41]  B. Sangwan-Norreel,et al.  Competence of Arabidopsis thaliana genotypes and mutants for Agrobacterium tumefaciens-mediated gene transfer: role of phytohormones. , 2000, Journal of experimental botany.

[42]  M. Sogin,et al.  Phylogenetic relationships of class II fumarase genes from trichomonad species. , 2001, Molecular biology and evolution.

[43]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[44]  G. B. Golding,et al.  The mosaic nature of the eukaryotic nucleus. , 1998, Molecular biology and evolution.

[45]  G. Olsen,et al.  Similar subunit architecture of archaeal and eukaryal RNA polymerases. , 2001, FEMS microbiology letters.

[46]  J. Palmer,et al.  Intracellular gene transfer in action: dual transcription and multiple silencings of nuclear and mitochondrial cox2 genes in legumes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[47]  M. D. Block,et al.  The cell biology of plant transformation: Current state, problems, prospects and the implications for the plant breeding , 2004, Euphytica.

[48]  W. Zillig Comparative biochemistry of Archaea and Bacteria. , 1991, Current opinion in genetics & development.

[49]  M. Sogin,et al.  A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[50]  A. Graybeal,et al.  Is it better to add taxa or characters to a difficult phylogenetic problem? , 1998, Systematic biology.

[51]  D. Horner,et al.  Iron hydrogenases and the evolution of anaerobic eukaryotes. , 2000, Molecular biology and evolution.

[52]  E. Koonin,et al.  Origin of an animal mitochondrial DNA polymerase subunit via lineage-specific acquisition of a glycyl-tRNA synthetase from bacteria of the Thermus-Deinococcus group. , 2001, Trends in genetics : TIG.

[53]  D. Patterson,et al.  The Diversity of Eukaryotes , 1999, The American Naturalist.

[54]  C. Woese The universal ancestor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[55]  W. Martin Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[56]  S. Poe,et al.  The Effect of Taxonomic Sampling on Accuracy of Phylogeny Estimation: Test Case of a Known Phylogeny , 1998 .

[57]  P. Thorsness,et al.  Escape of DNA from mitochondria to the nucleus in Saccharomyces cerevisiae , 1990, Nature.

[58]  P. J. Johnson,et al.  A common evolutionary origin for mitochondria and hydrogenosomes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[59]  S. Poe Sensitivity of phylogeny estimation to taxonomic sampling. , 1998, Systematic biology.

[60]  E. Canning,et al.  A mitochondrial Hsp70 orthologue in Vairimorpha necatrix: molecular evidence that microsporidia once contained mitochondria , 1997, Current Biology.

[61]  Michael J. Stanhope,et al.  Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates , 2001, Nature.

[62]  L. Margulis Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[63]  L. Katz Changing perspectives on the origin of eukaryotes. , 1998, Trends in ecology & evolution.

[64]  B F Lang,et al.  Mitochondrial genome evolution and the origin of eukaryotes. , 1999, Annual review of genetics.

[65]  W. Martin,et al.  How many genes in Arabidopsis come from cyanobacteria? An estimate from 386 protein phylogenies. , 2001, Trends in genetics : TIG.

[66]  J. R. Brown,et al.  A chimeric origin for eukaryotes re-examined. , 1996, Trends in biochemical sciences.

[67]  W. Doolittle You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. , 1998, Trends in genetics : TIG.

[68]  D. Horner,et al.  A single eubacterial origin of eukaryotic pyruvate: ferredoxin oxidoreductase genes: implications for the evolution of anaerobic eukaryotes. , 1999, Molecular biology and evolution.

[69]  C. Golz,et al.  Foreign DNA sequences are received by a wild-type strain of Aspergillus niger after co-culture with transgenic higher plants , 1994, Current Genetics.

[70]  G. B. Golding,et al.  Protein-based phylogenies support a chimeric origin for the eukaryotic genome. , 1995, Molecular biology and evolution.

[71]  M. Hasegawa,et al.  Secondary absence of mitochondria in Giardia lamblia and Trichomonas vaginalis revealed by valyl-tRNA synthetase phylogeny. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[72]  L. Katz,et al.  The Tangled Web: Gene Genealogies and the Origin of Eukaryotes , 1999, The American Naturalist.

[73]  P. Simonet,et al.  The fate of recombinant plant DNA in soil , 1998 .

[74]  J A Eisen,et al.  Microbial Genes in the Human Genome: Lateral Transfer or Gene Loss? , 2001, Science.

[75]  S. Garcia-Vallvé,et al.  Horizontal gene transfer in bacterial and archaeal complete genomes. , 2000, Genome research.