– conical intersection in trans-butadiene: ultrafast dynamics and optical spectra

Abstract The potential-energy functions of the 1 1 B u and 2 1 A g excited valence states of trans-butadiene have been characterised by the CASPT2 method. Based on these ab initio data, a vibronic-coupling model describing the conical intersection of the 1 1 B u and 2 1 A g states has been constructed. UV resonance-Raman and absorption spectra have been calculated, employing the time-dependent approach. The time-dependent wave-packet calculations reproduce the expected ultrafast (≈30 fs) radiationless decay of the optically bright 1 1 B u state into the dark 2 1 A g state.

[1]  H. Köppel,et al.  Vibronic structure of the valence π-photoelectron bands in furan, pyrrole, and thiophene , 1998 .

[2]  Lorenz S. Cederbaum,et al.  Multimode Molecular Dynamics Beyond the Born‐Oppenheimer Approximation , 2007 .

[3]  J. P. Doering,et al.  On the valence excited states of conjugated dienes , 1982 .

[4]  Roland Lindh,et al.  Towards an accurate molecular orbital theory for excited states: Ethene, butadiene, and hexatriene , 1993 .

[5]  J. P. Doering,et al.  100 eV electron impact study of 1,3‐butadiene , 1981 .

[6]  M. Zgierski,et al.  Resonance Raman scattering of butadiene: Vibronic activity of a bu mode demonstrates the presence of a 1Ag symmetry excited electronic state at low energy , 1991 .

[7]  M. Karplus,et al.  Photodynamics of polyenes: The effect of electron correlation on potential surfaces , 1980 .

[8]  W. Domcke,et al.  X̃2AG—Ã 2B1g conical intersection in the pyrazine cation and its effect on the photoelectron spectrum , 1993 .

[9]  V. Vaida,et al.  Direct absorption spectroscopy of jet‐cooled polyenes. II. The 1 1B+u←1 1A−g transitions of butadienes and hexatrienes , 1984 .

[10]  M. Karplus,et al.  Equilibrium geometry and dynamics of the valence excited states of 1,3-butadiene , 1983 .

[11]  Masakatsu Ito,et al.  Nonadiabatic transition and energy relaxation dynamics in the photoisomerization of s-trans butadiene , 1997 .

[12]  Mutsumi Aoyagi,et al.  An MCSCF study of the low‐lying states of trans‐butadiene , 1985 .

[13]  J. Cullum,et al.  Lanczos algorithms for large symmetric eigenvalue computations , 1985 .

[14]  B. Hudson,et al.  Resonance Raman spectroscopy of butadiene: Demonstration of a 2 1Ag state below the 1 1Bu V state , 1985 .

[15]  J. P. Doering,et al.  Electron impact study of the energy levels of trans‐1,3‐butadiene: II. Detailed analysis of valence and Rydberg transitions , 1980 .

[16]  Kimihiko Hirao,et al.  Theoretical study of the π→π* excited states of linear polyenes: The energy gap between 11Bu+ and 21Ag− states and their character , 1998 .

[17]  G. Stock,et al.  Theory of resonance Raman scattering and fluorescence from strongly vibronically coupled excited states of polyatomic molecules , 1990 .

[18]  I. N. Ragazos,et al.  A conical intersection mechanism for the photochemistry of butadiene. A MC-SCF study , 1993 .

[19]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[20]  V. Vaida,et al.  Multiphoton transitions in trans-butadiene observed by multiphoton ionization and thermal lensing spectroscopy , 1978 .

[21]  V. Vaida,et al.  Electronic spectra of butadiene and its methyl derivatives: A multiphoton ionization study , 1980 .

[22]  F. Zerbetto,et al.  The missing fluorescence of s‐trans butadiene , 1990 .

[23]  F. Zerbetto,et al.  Theoretical analysis of spectra of short polyenes , 1991 .

[24]  S. Rice,et al.  Spectroscopic properties of polyenes. I. The lowest energy allowed singlet‐singlet transition for cis‐ and trans‐ 1,3,5‐hexatriene , 1973 .

[25]  E. Heller The semiclassical way to molecular spectroscopy , 1981 .

[26]  Fernando Bernardi,et al.  Excited‐state reaction pathways for s‐cis buta‐1,3‐diene , 1995 .