A comparative study of 2-3 trees and AVL trees

This paper presents an analysis, a survey, and compares the pertinent characteristics of AVL and 2-3 trees. In an attempt to optimize the space complexity of 2-3 trees, it introduces a new space saving and efficient top-down insertion and construction algorithm. The analysis shows that neither data structure totally dominates the other. The decision as to which is cost-wise efficient is a function of the application.

[1]  Leonidas J. Guibas,et al.  A dichromatic framework for balanced trees , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[2]  William A. Martin,et al.  Optimizing binary trees grown with a sorting algorithm , 1972, CACM.

[3]  Ellis Horowitz,et al.  Fundamentals of Data Structures , 1984 .

[4]  Edward M. Reingold,et al.  Binary Search Trees of Bounded Balance , 1973, SIAM J. Comput..

[5]  Arnold L. Rosenberg,et al.  Minimal-Comparison 2, 3-Trees , 1978, SIAM J. Comput..

[6]  Jean-Loup Baer,et al.  Query costs in HB(1) trees versus 2–3 trees , 1981, International Journal of Computer & Information Sciences.

[7]  Rudolf Bayer,et al.  Organization and maintenance of large ordered indexes , 1972, Acta Informatica.

[8]  Andrew Chi-Chih Yao,et al.  On random 2–3 trees , 1978, Acta Informatica.

[9]  Jürg Nievergelt,et al.  Binary Search Trees and File Organization , 1974, CSUR.

[10]  Jean-Loup Baer,et al.  A comparison of tree-balancing algorithms , 1977, CACM.

[11]  Samuel H. Fuller,et al.  Performance of height-balanced trees , 1976, CACM.

[12]  Douglas Comer,et al.  Ubiquitous B-Tree , 1979, CSUR.

[13]  Arnold L. Rosenberg,et al.  Optimal 2, 3-Trees , 1979, SIAM J. Comput..

[14]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[15]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .