A side-sensitive modified group runs double sampling (SSMGRDS) control chart for detecting mean shifts

ABSTRACT A side-sensitive modified group runs double sampling (SSMGRDS) chart for detecting mean shifts is proposed. The average number of observations to signal (ANOS) and expected average number of observations to signal (EANOS) performances of the SSMGRDS, , double sampling (DS), side-sensitive group runs double sampling (SSGRDS), side-sensitive modified group runs (SSMGR) and exponentially weighted moving average (EWMA) charts are compared. For the zero-state case, the SSMGRDS chart outperforms all charts under comparison, for all sizes of mean shifts. For the steady-state case, the EWMA chart prevails for small and moderate mean shifts but the SSMGRDS chart prevails for large shifts.

[1]  Philippe Castagliola,et al.  Optimal design of the double sampling X chart with estimated parameters based on median run length , 2014, Comput. Ind. Eng..

[2]  Michael B. C. Khoo,et al.  Economic and economic statistical designs of the synthetic chart using loss functions , 2013, Eur. J. Oper. Res..

[3]  Philippe Castagliola,et al.  The synthetic [Xbar] chart with estimated parameters , 2011 .

[4]  Philippe Castagliola,et al.  Synthetic Double Sampling X̄ Chart with Estimated Process Parameters , 2015 .

[5]  Philippe Castagliola,et al.  The Effect of Measurement Errors on the Synthetic x̄ Chart , 2015, Qual. Reliab. Eng. Int..

[6]  Giovanni Celano,et al.  A Synthetic Control Chart for Monitoring the Ratio of Two Normal Variables , 2016, Qual. Reliab. Eng. Int..

[7]  Jennifer Brown,et al.  New Synthetic EWMA and Synthetic CUSUM Control Charts for Monitoring the Process Mean , 2016, Qual. Reliab. Eng. Int..

[8]  Saddam Akber Abbasi,et al.  On median control charting under double sampling scheme , 2014 .

[9]  R. N. Rattihalli,et al.  A side sensitive modified group runs control chart to detect shifts in the process mean , 2010 .

[10]  Jean-Jacques Daudin,et al.  Double sampling X charts , 1992 .

[11]  William H. Woodall,et al.  Evaluating and Improving the Synthetic Control Chart , 2002 .

[12]  Philippe Castagliola,et al.  Optimal designs of the double sampling X¯ chart with estimated parameters , 2013 .

[13]  Antonio Fernando Branco Costa,et al.  Variable parameter and double sampling charts in the presence of correlation: The Markov chain approach , 2011 .

[14]  R. N. Rattihalli,et al.  A Group Runs Control Chart for Detecting Shifts in the Process Mean , 2004 .

[15]  Rassoul Noorossana,et al.  Combined Variable Sample Size, Sampling Interval, and Double Sampling (CVSSIDS) Adaptive Control Charts , 2015 .

[16]  Michael B. C. Khoo,et al.  Economic and economic-statistical designs of the side sensitive group runs chart , 2015, Comput. Ind. Eng..

[17]  Philippe Castagliola,et al.  A combined synthetic&X chart for monitoring the process mean , 2010 .

[18]  Trevor A Spedding,et al.  A Synthetic Control Chart for Detecting Small Shifts in the Process Mean , 2000 .

[19]  Gadre Mukund Parasharam,et al.  Modified Synthetic Control Chart for One-Step Markov-Dependent Processes , 2015 .

[20]  Francisco Aparisi,et al.  Synthetic-X control charts optimized for in-control and out-of-control regions , 2009, Comput. Oper. Res..

[21]  P. Croasdale,et al.  Control Charts for a Double-Sampling Scheme Based on Average Production Run Lengths , 1974 .

[22]  Sandile Charles Shongwe,et al.  Short note explaining the error in ‘Machado M.A.G. and Costa A.F.B. (2014) “A side-sensitive synthetic chart combined with an X chart.” International Journal of Production Research 52 (11): 3404–3416’ , 2016 .

[23]  Fred Spiring,et al.  Introduction to Statistical Quality Control , 2007, Technometrics.

[24]  Michael B. C. Khoo,et al.  Side-sensitive group runs double sampling (SSGRDS) chart for detecting mean shifts , 2015 .

[25]  Jianxin Jiao,et al.  Evaluating and Improving the Unit and Group-Runs Chart , 2007 .

[26]  Antonio Fernando Branco Costa,et al.  A side-sensitive synthetic chart combined with an X chart , 2014 .

[27]  Ross Sparks,et al.  CUSUM Charts for Signalling Varying Location Shifts , 2000 .

[28]  Philippe Castagliola,et al.  Optimal design of the synthetic chart for the process mean based on median run length , 2012 .

[29]  R. N. Rattihalli,et al.  Modified Group Runs Control Charts to Detect Increases in Fraction Non Conforming and Shifts in the Process Mean , 2006 .

[30]  R. N. Rattihalli,et al.  A Side Sensitive Group Runs Control Chart for Detecting Shifts in the Process Mean , 2007, Stat. Methods Appl..

[31]  Jennifer Brown,et al.  New Synthetic Control Charts for Monitoring Process Mean and Process Dispersion , 2015, Qual. Reliab. Eng. Int..

[32]  Antonio Fernando Branco Costa,et al.  A side-sensitive synthetic chart combined with a VSS chart , 2016, Comput. Ind. Eng..

[33]  Philippe Castagliola,et al.  A synthetic double sampling control chart for the process mean , 2010 .

[34]  Pei-Hsi Lee,et al.  An economic design of combined double sampling and variable sampling interval X¯ control chart , 2012 .

[35]  Antonio Fernando Branco Costa,et al.  The steady‐state behavior of the synthetic and side‐sensitive synthetic double sampling X¯ charts , 2015, Qual. Reliab. Eng. Int..

[36]  Pei-Hsi Lee,et al.  The Performance of Double Sampling Control Charts Under Non Normality , 2009, Commun. Stat. Simul. Comput..

[37]  J. Daudin,et al.  Double Sampling Charts , 1992 .

[38]  Philippe Castagliola,et al.  Economic‐Statistical Design of the Synthetic X¯ Chart with Estimated Process Parameters , 2015, Qual. Reliab. Eng. Int..

[39]  Philippe Castagliola,et al.  A median run length-based double-sampling X¯$$ \overline{X} $$ chart with estimated parameters for minimizing the average sample size , 2015 .

[40]  Ming Ha Lee,et al.  A Variable Sampling Interval Synthetic Xbar Chart for the Process Mean , 2015, PloS one.