Multi-step screening of neoantigens’ HLA- and TCR-interfaces improves prediction of survival

[1]  James J Foti,et al.  An empirical antigen selection method identifies neoantigens that either elicit broad anti-tumor T cell responses or drive tumor growth. , 2021, Cancer discovery.

[2]  A. D. De Groot,et al.  Self-replicating RNAs drive protective anti-tumor T cell responses to neoantigen vaccine targets in a combinatorial approach. , 2020, Molecular therapy : the journal of the American Society of Gene Therapy.

[3]  G. Vidarsson,et al.  MS-Based Allotype-Specific Analysis of Polyclonal IgG-Fc N-Glycosylation , 2020, Frontiers in Immunology.

[4]  A. D. De Groot,et al.  Immune-engineered H7N9 influenza hemagglutinin improves protection against viral influenza virus challenge , 2020, Human vaccines & immunotherapeutics.

[5]  A. D. De Groot,et al.  T-Cell Dependent Immunogenicity of Protein Therapeutics Pre-clinical Assessment and Mitigation–Updated Consensus and Review 2020 , 2020, Frontiers in Immunology.

[6]  Guilhem Richard,et al.  Better Epitope Discovery, Precision Immune Engineering, and Accelerated Vaccine Design Using Immunoinformatics Tools , 2020, Frontiers in Immunology.

[7]  C. Swanton,et al.  Neoantigen quality, not quantity , 2019, Science Translational Medicine.

[8]  Youping Deng,et al.  Multi-antigen Vaccination With Simultaneous Engagement of the OX40 Receptor Delays Malignant Mesothelioma Growth and Increases Survival in Animal Models , 2019, Front. Oncol..

[9]  Bethany M. Biron,et al.  Abstract 943: Filtering out self-like neoantigens improves immune response to cancer vaccines , 2019, Immunology.

[10]  A. Holian,et al.  Mapping of Dynamic Transcriptome Changes Associated With Silica-Triggered Autoimmune Pathogenesis in the Lupus-Prone NZBWF1 Mouse , 2019, Front. Immunol..

[11]  A. Sluder,et al.  Coxiella burnetii Epitope-Specific T-Cell Responses in Patients with Chronic Q Fever , 2019, Infection and Immunity.

[12]  J. Ebersole,et al.  Microbiome Profiles of Ligature-Induced Periodontitis in Nonhuman Primates across the Life Span , 2019, Infection and Immunity.

[13]  R. Bucala,et al.  Promiscuous Coxiella burnetii CD4 Epitope Clusters Associated With Human Recall Responses Are Candidates for a Novel T-Cell Targeted Multi-Epitope Q Fever Vaccine , 2019, Front. Immunol..

[14]  San-Gang Wu,et al.  21-Gene Recurrence Score Assay and Outcomes of Adjuvant Radiotherapy in Elderly Women With Early-Stage Breast Cancer After Breast-Conserving Surgery , 2019, Front. Oncol..

[15]  C. Brennan,et al.  Tumor mutational load predicts survival after immunotherapy across multiple cancer types , 2019, Nature Genetics.

[16]  Alyssa R. Richman,et al.  Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial , 2018, Nature.

[17]  J. Lunceford,et al.  Pan-tumor genomic biomarkers for PD-1 checkpoint blockade–based immunotherapy , 2018, Science.

[18]  Joshua M. Stuart,et al.  Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer , 2018, Cell.

[19]  M. Nielsen,et al.  NetMHCpan-4.0: Improved Peptide–MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data , 2017, The Journal of Immunology.

[20]  Mithat Gönen,et al.  Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer , 2017, Nature.

[21]  A. Levine,et al.  A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy , 2017, Nature.

[22]  Steven J. M. Jones,et al.  Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer , 2017, Cell.

[23]  J. Utikal,et al.  Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer , 2017, Nature.

[24]  Charles H. Yoon,et al.  An immunogenic personal neoantigen vaccine for patients with melanoma , 2017, Nature.

[25]  E. Kirkness,et al.  Fast and accurate HLA typing from short-read next-generation sequence data with xHLA , 2017, Proceedings of the National Academy of Sciences.

[26]  Arnone Nithichanon,et al.  A humanized mouse model identifies key amino acids for low immunogenicity of H7N9 vaccines , 2017, Scientific Reports.

[27]  M. Nielsen,et al.  Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification , 2015, Immunogenetics.

[28]  A. D. De Groot,et al.  H7N9 T-cell epitopes that mimic human sequences are less immunogenic and may induce Treg-mediated tolerance , 2015, Human vaccines & immunotherapeutics.

[29]  J. Yasuda,et al.  HLA-VBSeq: accurate HLA typing at full resolution from whole-genome sequencing data , 2015, BMC Genomics.

[30]  J. Wolchok,et al.  Genetic basis for clinical response to CTLA-4 blockade in melanoma. , 2014, The New England journal of medicine.

[31]  A. D. De Groot,et al.  Tregitope: Immunomodulation powerhouse. , 2014, Human immunology.

[32]  Maxim N. Artyomov,et al.  Checkpoint Blockade Cancer Immunotherapy Targets Tumour-Specific Mutant Antigens , 2014, Nature.

[33]  A. Rothman,et al.  The two-faced T cell epitope , 2013, Human vaccines & immunotherapeutics.

[34]  J. Castle,et al.  HLA typing from RNA-Seq sequence reads , 2012, Genome Medicine.

[35]  E. Shevach Mechanisms of foxp3+ T regulatory cell-mediated suppression. , 2009, Immunity.

[36]  D. Scott,et al.  Activation of natural regulatory T cells by IgG Fc-derived peptide "Tregitopes". , 2008, Blood.

[37]  C. Bailey-Kellogg,et al.  HCV epitope, homologous to multiple human protein sequences, induces a regulatory T cell response in infected patients. , 2015, Journal of hepatology.

[38]  D. Scott,et al.  Tregitope update: mechanism of action parallels IVIg. , 2013, Autoimmunity reviews.