ANN and multiple regression method-based modelling of cutting forces in orthogonal machining of AISI 316L stainless steel

[1]  Héctor R. Siller,et al.  Adaptive control optimisation system for minimising production cost in hard milling operations , 2014, Int. J. Comput. Integr. Manuf..

[2]  Adem Çiçek,et al.  Evaluation of machinability of hardened and cryo-treated AISI H13 hot work tool steel with ceramic inserts , 2013 .

[3]  Ugur Köklü,et al.  Optimisation of machining parameters in interrupted cylindrical grinding using the Grey-based Taguchi method , 2013, Int. J. Comput. Integr. Manuf..

[4]  Emel Kuram,et al.  Performance analysis of developed vegetable-based cutting fluids by D-optimal experimental design in turning process , 2012, Int. J. Comput. Integr. Manuf..

[5]  R. Venkata Rao,et al.  Parameter Optimization of Machining Processes Using a New Optimization Algorithm , 2012 .

[6]  Levent Çelik,et al.  An intelligent system approach for surface roughness and vibrations prediction in cylindrical grinding , 2012, Int. J. Comput. Integr. Manuf..

[7]  V. N. Gaitonde,et al.  Machinability investigations on hardened AISI 4340 steel using coated carbide insert , 2012 .

[8]  Adem Çiçek,et al.  Taguchi method based optimisation of drilling parameters in drilling of AISI 316 steel with PVD monolayer and multilayer coated HSS drills , 2012 .

[9]  Adem Çiçek,et al.  Tool life and wear mechanism of coated and uncoated Al2O3/TiCN mixed ceramic tools in turning hardened alloy steel , 2012 .

[10]  Jan C. Aurich,et al.  Effect of the coating system on the tool performance when turning heat treated AISI 4140 , 2012 .

[11]  Yousef Abbaspour-Gilandeh,et al.  Artificial Neural Network and stepwise multiple range regression methods for prediction of tractor fuel consumption , 2011 .

[12]  Serhat Yilmaz,et al.  Surface roughness prediction in machining of cast polyamide using neural network , 2011, Neural Computing and Applications.

[13]  Dilip Kumar Pratihar,et al.  Study on electron beam butt welding of austenitic stainless steel 304 plates and its input–output modelling using neural networks , 2011 .

[14]  Ihsan Korkut,et al.  Application of regression and artificial neural network analysis in modelling of tool-chip interface temperature in machining , 2011, Expert Syst. Appl..

[15]  T. Khan,et al.  Eutectic bonding of austenitic stainless steel 316L to magnesium alloy AZ31 using copper interlayer , 2011 .

[16]  İrfan Ucun,et al.  Numerical simulation of orthogonal machining process using multilayer and single-layer coated tools , 2011 .

[17]  A. I. Fernández-Abia,et al.  Effect of very high cutting speeds on shearing, cutting forces and roughness in dry turning of austenitic stainless steels , 2011 .

[18]  Hariharan Chandrasekaran,et al.  Experimental study and modelling of tool temperature distribution in orthogonal cutting of AISI 316L and AISI 3115 steels , 2011 .

[19]  M. Sortino,et al.  Development of a modular dynamometer for triaxial cutting force measurement in turning , 2011 .

[20]  B Suksawat,et al.  Chip form classification and main cutting force prediction of cast nylon in turning operation using artificial neural network , 2010, ICCAS 2010.

[21]  P. Srinivasa Pai,et al.  Prediction of built-up edge formation in machining with round edge and sharp tools using a neural network approach , 2010, Int. J. Comput. Integr. Manuf..

[22]  Ilker Ali Ozkan,et al.  A comparative study of ANN and FES for predicting of cutting forces and tool tip temperature in turning , 2010, CompSysTech '10.

[23]  M. Yallese,et al.  Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool , 2010 .

[24]  Mehdi Tajdari,et al.  Surface roughness modelling in hard turning operation of AISI 4140 using CBN cutting tool , 2010 .

[25]  İrfan Ucun,et al.  The performance of ceramic and cermet cutting tools for the machining of austempered ductile iron , 2009 .

[26]  J. Paulo Davim,et al.  Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model , 2008 .

[27]  K. Aslantaş,et al.  Evaluation of the Performance of CBN Tools When Turning Austempered Ductile Iron Material , 2008 .

[28]  D. I. Lalwani,et al.  Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel , 2008 .

[29]  J. Paulo Davim,et al.  Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models , 2008 .

[30]  Shankar Chakraborty,et al.  Improved recognition of control chart patterns using artificial neural networks , 2008 .

[31]  R. Saravanan,et al.  A genetic algorithm-based artificial neural network model for the optimization of machining processes , 2009, Neural Computing and Applications.

[32]  Abdulrahman Al-Ahmari,et al.  Predictive machinability models for a selected hard material in turning operations , 2007 .

[33]  Xifeng Li,et al.  Prediction of cutting force for self-propelled rotary tool using artificial neural networks , 2006 .

[34]  Franci Cus,et al.  Approach to optimization of cutting conditions by using artificial neural networks , 2006 .

[35]  Surjya K. Pal,et al.  Surface roughness prediction in turning using artificial neural network , 2005, Neural Computing & Applications.

[36]  Uday S. Dixit,et al.  A neural-network-based methodology for the prediction of surface roughness in a turning process , 2005 .

[37]  T. Altan,et al.  Computer Simulation of Orthogonal Cutting using a Tool with Multiple Coatings , 2004 .

[38]  Jean-Luc Battaglia,et al.  Tribological and thermal functions of cutting tool coatings , 2004 .

[39]  Ulvi Seker,et al.  Investigation of the effect of rake angle on main cutting force , 2004 .

[40]  A. K. Balaji,et al.  AN ‘EFFECTIVE CUTTING TOOL THERMAL CONDUCTIVITY’ BASED MODEL FOR TOOL–CHIP CONTACT IN MACHINING WITH MULTI-LAYER COATED CUTTING TOOLS , 2002 .

[41]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .