Records and Occupation Time Statistics for Area-Preserving Maps

A relevant problem in dynamics is to characterize how deterministic systems may exhibit features typically associated with stochastic processes. A widely studied example is the study of (normal or anomalous) transport properties for deterministic systems on non-compact phase space. We consider here two examples of area-preserving maps: the Chirikov–Taylor standard map and the Casati–Prosen triangle map, and we investigate transport properties, records statistics, and occupation time statistics. Our results confirm and expand known results for the standard map: when a chaotic sea is present, transport is diffusive, and records statistics and the fraction of occupation time in the positive half-axis reproduce the laws for simple symmetric random walks. In the case of the triangle map, we retrieve the previously observed anomalous transport, and we show that records statistics exhibit similar anomalies. When we investigate occupation time statistics and persistence probabilities, our numerical experiments are compatible with a generalized arcsine law and transient behavior of the dynamics.

[1]  R. Artuso,et al.  Extreme value statistics of positive recurrent centrally biased random walks , 2022, Journal of Statistical Mechanics: Theory and Experiment.

[2]  G. Casati,et al.  Sublinear diffusion in the generalized triangle map. , 2022, Physical review. E.

[3]  G. Casati,et al.  Statistical and dynamical properties of the quantum triangle map , 2022, Journal of Physics A: Mathematical and Theoretical.

[4]  Prashant Singh Extreme value statistics and arcsine laws for heterogeneous diffusion processes. , 2021, Physical review. E.

[5]  T. Manos,et al.  Anomalous diffusion in single and coupled standard maps with extensive chaotic phase spaces , 2021, Physica D: Nonlinear Phenomena.

[6]  R. Artuso,et al.  Statistics of occupation times and connection to local properties of nonhomogeneous random walks. , 2020, Physical review. E.

[7]  G. Cristadoro,et al.  Transport properties and ageing for the averaged Lévy–Lorentz gas , 2019, Journal of Physics A: Mathematical and Theoretical.

[8]  A. Kundu,et al.  Generalised ‘Arcsine’ laws for run-and-tumble particle in one dimension , 2019, Journal of Statistical Mechanics: Theory and Experiment.

[9]  G. Contopoulos,et al.  Characteristic times in the standard map. , 2018, Physical review. E.

[10]  S. Majumdar,et al.  Asymptotics for the expected maximum of random walks and Lévy flights with a constant drift , 2018, Journal of Statistical Mechanics: Theory and Experiment.

[11]  G. Contopoulos,et al.  Global and local diffusion in the standard map. , 2018, Physical review. E.

[12]  Hong Zhao,et al.  Ultraslow diffusion and weak ergodicity breaking in right triangular billiards. , 2017, Physical review. E.

[13]  Satya N. Majumdar,et al.  Record statistics of a strongly correlated time series: random walks and Lévy flights , 2017, 1702.00586.

[14]  A. Lakshminarayan,et al.  Records in the classical and quantum standard map , 2015, 1503.07823.

[15]  G. Casati,et al.  Classical dynamical localization. , 2014, Physical review letters.

[16]  G. Cristadoro,et al.  Sparre-Andersen theorem with spatiotemporal correlations. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  M. Serva Scaling behavior for random walks with memory of the largest distance from the origin. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  M. Robnik,et al.  Survey on the role of accelerator modes for anomalous diffusion: the case of the standard map. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Satya N. Majumdar,et al.  Persistence and first-passage properties in nonequilibrium systems , 2013, 1304.1195.

[20]  G. Wergen,et al.  Records in stochastic processes—theory and applications , 2012, 1211.6005.

[21]  E. Gutkin Billiard dynamics: an updated survey with the emphasis on open problems. , 2012, Chaos.

[22]  A. Lakshminarayan,et al.  Record statistics in random vectors and quantum chaos , 2012, 1205.0698.

[23]  R. Artuso,et al.  Higher order statistics in the annulus square billiard: transport and polyspectra , 2010, 1009.1019.

[24]  E. Gutkin,et al.  On recurrence and ergodicity for geodesic flows on non-compact periodic polygonal surfaces , 2010, Ergodic Theory and Dynamical Systems.

[25]  S. Majumdar,et al.  Universal first-passage properties of discrete-time random walks and Lévy flights on a line: Statistics of the global maximum and records , 2009, 0912.2586.

[26]  Katie Bloor,et al.  Some Remarks on the Geometry of the Standard Map , 2008, Int. J. Bifurc. Chaos.

[27]  Roberto Venegeroles Calculation of superdiffusion for the Chirikov-Taylor model. , 2008, Physical review letters.

[28]  C. Bianca,et al.  Onset of diffusive behavior in confined transport systems. , 2008, Chaos.

[29]  Dima Shepelyansky,et al.  Chirikov standard map , 2008, Scholarpedia.

[30]  L. Bunimovich,et al.  On ergodic and mixing properties of the triangle map , 2008, 0802.4211.

[31]  Takuma Akimoto Generalized Arcsine Law and Stable Law in an Infinite Measure Dynamical System , 2008, 0801.1382.

[32]  R. Zweimüller Infinite measure preserving transformations with compact first regeneration , 2007 .

[33]  Robert S. MacKay,et al.  Cerbelli and Giona's Map Is Pseudo-Anosov and Nine Consequences , 2006, J. Nonlinear Sci..

[34]  E. Barkai,et al.  Weak ergodicity breaking with deterministic dynamics , 2006 .

[35]  E. Barkai Residence Time Statistics for Normal and Fractional Diffusion in a Force Field , 2006, cond-mat/0601143.

[36]  H. Larralde,et al.  Occurrence of normal and anomalous diffusion in polygonal billiard channels. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Massimiliano Giona,et al.  A Continuous Archetype of Nonuniform Chaos in Area-Preserving Dynamical Systems , 2005, J. Nonlinear Sci..

[38]  S. Majumdar,et al.  Precise asymptotics for a random walker’s maximum , 2005, cond-mat/0506195.

[39]  M. Esposti,et al.  Recurrence near given sets and the complexity of the Casati–Prosen map , 2005 .

[40]  M Cencini,et al.  Brownian motion and diffusion: from stochastic processes to chaos and beyond. , 2004, Chaos.

[41]  A. Vulpiani,et al.  The origin of diffusion: The case of non-chaotic systems , 2002, nlin/0210049.

[42]  M. Thaler A limit theorem for sojourns near indifferent fixed points of one-dimensional maps , 2002, Ergodic Theory and Dynamical Systems.

[43]  T. Prosen,et al.  Anomalous diffusion and dynamical localization in polygonal billiards. , 2001, Physical review letters.

[44]  Valery B. Nevzorov,et al.  Records: Mathematical Theory , 2000 .

[45]  G. Casati,et al.  Triangle map: A model of quantum chaos , 2000, Physical review letters.

[46]  I. Guarneri,et al.  Spectral properties and anomalous transport in a polygonal billiard. , 2000, Chaos.

[47]  Giulio Casati,et al.  Mixing Property of Triangular Billiards , 1999, chao-dyn/9908022.

[48]  Andrea Mazzino,et al.  On strong anomalous diffusion , 1998, chao-dyn/9811012.

[49]  Lev Kaplan,et al.  Weak quantum ergodicity , 1998, chao-dyn/9810002.

[50]  R. Artuso Correlations and spectra of triangular billiards , 1997 .

[51]  Giulio Casati,et al.  Numerical study on ergodic properties of triangular billiards , 1997 .

[52]  G. Zaslavsky,et al.  Self-similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics. , 1997, Chaos.

[53]  G. Zaslavsky,et al.  Reply to “Comment on ‘Self-similarity and transport in the standard map’ ” , 1996 .

[54]  E. Gutkin Billiards in polygons: Survey of recent results , 1996 .

[55]  A. Lichtenberg,et al.  Regular and Chaotic Dynamics , 1992 .

[56]  Roberto Artuso,et al.  Diffusive dynamics and periodic orbits of dynamical systems , 1991 .

[57]  Hazime Mori,et al.  Anomalous Diffusion Due to Accelerator Modes in the Standard Map , 1991 .

[58]  Murray,et al.  Resonances and diffusion in periodic Hamiltonian maps. , 1989, Physical review letters.

[59]  E. Gutkin,et al.  Billiards in polygons , 1986 .

[60]  R. MacKay,et al.  STOCHASTICITY AND TRANSPORT IN HAMILTONIAN SYSTEMS , 1984 .

[61]  R. White,et al.  Calculation of Turbulent Diffusion for the Chirikov-Taylor Model , 1980 .

[62]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[63]  H. Ko An introduction to probability theory and its applications, Vol. II: by William Feller. 626 pages, 6 × 9 inches, New York, John Wiley and Sons, Inc., 1966. Price $12.00 , 1967 .

[64]  W. Feller An Introduction to Probability Theory and Its Applications , 1959 .

[65]  John Lamperti,et al.  An occupation time theorem for a class of stochastic processes , 1958 .

[66]  E. Andersen On the fluctuations of sums of random variables II , 1953 .

[67]  Mw Hirsch,et al.  Chaos In Dynamical Systems , 2016 .

[68]  R. Burioni,et al.  Anomalous Diffusion: Deterministic and Stochastic Perspectives , 2014 .

[69]  Massimo Cencini,et al.  Large Deviations in Physics , 2014 .

[70]  E. Gutkin BILLIARD DYNAMICS: A SURVEY WITH THE EMPHASIS ON OPEN PROBLEMS , 2011 .

[71]  R. Zweimüller Surrey Notes on In nite Ergodic Theory , 2009 .

[72]  I. D. Vega,et al.  Transport in polygonal billiards , 2004 .

[73]  M. Thaler The Dynkin-Lamperti arc-sine laws for measure preserving transformations , 1998 .

[74]  Jon Aaronson,et al.  An introduction to infinite ergodic theory , 1997 .

[75]  P. Gaspard,et al.  Investigation of the Lorentz gas in terms of periodic orbits. , 1992, Chaos.

[76]  R. Jensen Quantum chaos , 1992, Nature.

[77]  J. Mycielski What is a mathematical theory , 1985 .

[78]  J. Giujs CENTRALLY BIASED DISCRETE RANDOM WALK , 1956 .

[79]  Louis J. Cote,et al.  On fluctuations of sums of random variables , 1955 .