The directional subdifferential of the difference of two convex functions

We provide a criterion giving a formula for the directional (or contingent) subdifferential of the difference of two convex functions. We even extend it to the difference of two approximately starshaped functions. Our analysis relies on a notion of approximate monotonicity for operators which is much less demanding than the usual one.

[1]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[2]  A. Daniilidis,et al.  Subsmooth sets: Functional characterizations and related concepts , 2004 .

[3]  Jean-Paul Penot,et al.  Favorable classes of mappings and multimappings in nonlinear analysis and optimization. , 1996 .

[4]  Jean-Paul Penot,et al.  On the Subdifferentiability of the Difference of Two Functions and Local Minimization , 2008 .

[5]  Jean-Paul Penot Softness, sleekness and regularity properties in nonsmooth analysis , 2008 .

[6]  Le Thi Hoai An,et al.  The DC (Difference of Convex Functions) Programming and DCA Revisited with DC Models of Real World Nonconvex Optimization Problems , 2005, Ann. Oper. Res..

[7]  L. L. Veselý,et al.  Delta-convex mappings between Banach spaces and applications , 1989 .

[8]  S. Gautier Affine and eclipsing multifunctions , 1990 .

[9]  Jean-Paul Penot,et al.  Duality for Anticonvex Programs , 2001, J. Glob. Optim..

[10]  R. Horst,et al.  DC Programming: Overview , 1999 .

[11]  R. Rockafellar Favorable Classes of Lipschitz Continuous Functions in Subgradient Optimization , 1981 .

[12]  Reiner Horst,et al.  Introduction to Global Optimization (Nonconvex Optimization and Its Applications) , 2002 .

[13]  J.-B. Hiriart-Urruty,et al.  From Convex Optimization to Nonconvex Optimization. Necessary and Sufficient Conditions for Global Optimality , 1989 .

[14]  Jean-Paul Penot Variations on the Theme of Nonsmooth Analysis: Another Subdifferential , 1985 .

[15]  Juan Enrique Martínez-Legaz,et al.  Duality For D.C. Optimization Over Compact Sets , 2001 .

[16]  Juan Enrique Martínez-Legaz,et al.  Duality in D.C. Programming: The Case of Several D.C. Constraints , 1999 .

[17]  Jean-Paul Penot,et al.  Approximation and decomposition properties of some classes of locally D.C. functions , 1988, Math. Program..

[18]  Edgar Asplund Differentiability of the metric projection in finite-dimensional Euclidean space , 1973 .

[19]  Panos M. Pardalos,et al.  Optimization Theory: Recent Developments from Mátraháza , 2011 .

[20]  J. Toland On sub-differential calculus and duality in non-convex optimisation , 1979 .

[21]  J. Toland Duality in nonconvex optimization , 1978 .

[22]  Alexander Strekalovsky Some Remarks on D.C. Programming , 2003 .

[23]  J. Hiriart-Urruty Generalized Differentiability / Duality and Optimization for Problems Dealing with Differences of Convex Functions , 1985 .

[24]  Alexander S. Strekalovsky Global Optimality Conditions for Nonconvex Optimization , 1998, J. Glob. Optim..

[25]  J. Hiriart-Urruty A General Formula on the Conjugate of the Difference of Functions , 1986, Canadian Mathematical Bulletin.

[26]  H. Ngai,et al.  Approximately convex functions and approximately monotonic operators , 2007 .

[27]  Luděk Zajíček,et al.  On compositions of d.c. functions and mappings , 2009 .

[28]  Gordon Whyburn,et al.  Functions and Mappings , 1979 .

[29]  Alexander S. Strekalovsky One way to Construct a Global Search Algorithm for d.c. Minimization Problems , 2000 .

[30]  T. T. A. Nghia,et al.  Farkas-type results and duality for DC programs with convex constraints , 2007 .

[31]  M. Volle Conjugaison par tranches et dualitë de toland , 1987 .

[32]  N. Dinh,et al.  A closedness condition and its applications to DC programs with convex constraints , 2010 .

[33]  Jacob Ponstein Convexity and Duality in Optimization , 1985 .

[34]  Juan Enrique Martínez-Legaz,et al.  A formula on the approximate subdifferential of the difference of convex functions , 1992, Bulletin of the Australian Mathematical Society.

[35]  Jean-Baptiste Hiriart-Urruty,et al.  How to regularize a difference of convex functions , 1991 .

[36]  P. Hartman On functions representable as a difference of convex functions , 1959 .

[37]  A. Taa Optimality Conditions for Vector Optimization Problems of a Difference of Convex Mappings , 2022 .

[38]  Hoang Tuy,et al.  On Some Recent Advances and Applications of D.C. Optimization , 2000 .

[39]  Jean-Paul Penot,et al.  Regularization by erasement , 2006 .

[40]  Yu. S. Ledyaev,et al.  A Note on the Characterization of the Global Maxima of a (Tangentially) Convex Function Over a Convex Set , 1996 .

[41]  A. S. Strekalovskii Extremal problems on complements of convex sets , 1993 .

[42]  V. F. Dem'yanov,et al.  Nondifferentiable Optimization , 1985 .

[43]  Jean-Pierre Aubin Mutational and Morphological Analysis , 2012 .

[44]  Jean-Paul Penot Gap Continuity of Multimaps , 2008 .

[45]  J. Spingarn Submonotone subdifferentials of Lipschitz functions , 1981 .

[46]  M. Volle,et al.  Duality in DC Programming , 1998 .

[47]  P. Pardalos,et al.  Optimization and optimal control , 2003 .

[48]  W. Oettli,et al.  Simplified Optimality Conditions for Minimizing the Difference of Vector-Valued Functions , 2001 .

[49]  G. Matheron Random Sets and Integral Geometry , 1976 .

[50]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.

[51]  L. S. Pontryagin,et al.  Linear Differential Games , 1974 .

[52]  Jean-Paul Penot On the Minimization of Difference Functions , 1998, J. Glob. Optim..

[53]  J. Martínez-Legaz,et al.  Generalized Convexity, Generalized Monotonicity: Recent Results , 2011 .

[54]  F. Giannessi,et al.  Nonlinear Optimization and Related Topics , 2000 .

[55]  Jean-Paul Penot,et al.  Tangentially ds functions , 2007 .

[56]  T. P. Dinh,et al.  Convex analysis approach to d.c. programming: Theory, Algorithm and Applications , 1997 .

[57]  P. Pardalos,et al.  Handbook of global optimization , 1995 .