The discrete nature of trabecular bone microarchitecture affects implant stability.

[1]  D. Rampton,et al.  Application of the who fracture risk assessment tool (FRAX) to predict need for dexa scanning and treatment in patients with inflammatory bowel disease at risk of osteoporosis , 2011, Gut.

[2]  R. Müller,et al.  Towards validation of computational analyses of peri-implant displacements by means of experimentally obtained displacement maps , 2011, Computer methods in biomechanics and biomedical engineering.

[3]  G. H. van Lenthe,et al.  Computational analyses of small endosseous implants in osteoporotic bone. , 2010, European cells & materials.

[4]  A. J. Wirth,et al.  Mechanical competence of bone-implant systems can accurately be determined by image-based micro-finite element analyses , 2010 .

[5]  R. Müller,et al.  Endosseous implant anchorage is critically dependent on mechanostructural determinants of peri‐implant bone trabeculae , 2010, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[6]  Steven K Boyd,et al.  Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. , 2008, Bone.

[7]  Ralph Müller,et al.  A scalable multi‐level preconditioner for matrix‐free µ‐finite element analysis of human bone structures , 2008 .

[8]  Bo Rangert,et al.  Tilting of splinted implants for improved prosthodontic support: a two-dimensional finite element analysis. , 2007, The Journal of prosthetic dentistry.

[9]  L. Lidgren,et al.  The Effect of Bone Quality on the Stability of Ankle Arthrodesis. A Finite Element Study , 2004, Foot & ankle international.

[10]  Taiji Adachi,et al.  Effects of a Fixation Screw on Trabecular Structural Changes in a Vertebral Body Predicted by Remodeling Simulation , 2003, Annals of Biomedical Engineering.

[11]  John D. Currey,et al.  Bones: Structure and Mechanics , 2002 .

[12]  F. Eckstein,et al.  Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. , 2002, Bone.

[13]  P. Rüegsegger,et al.  Direct Three‐Dimensional Morphometric Analysis of Human Cancellous Bone: Microstructural Data from Spine, Femur, Iliac Crest, and Calcaneus , 1999, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[14]  B. van Rietbergen,et al.  COMPUTATIONAL STRATEGIES FOR ITERATIVE SOLUTIONS OF LARGE FEM APPLICATIONS EMPLOYING VOXEL DATA , 1996 .

[15]  P. Branemark,et al.  Intra-Osseous Anchorage of Dental Prostheses , 1970, Scandinavian Journal of Plastic and Reconstructive Surgery.

[16]  J. Wolff Das Gesetz der Transformation der Knochen , 1893 .

[17]  C. Saltzman,et al.  Foot and Ankle International. , 2013, Foot & ankle international.

[18]  R. Müller,et al.  Peri-implant bone microarchitecture in immediate vicinity highly predicts implant stability whereas more distant bone does not , 2011 .

[19]  R. Huiskes,et al.  A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. , 1995, Journal of biomechanics.

[20]  J Lindström,et al.  Intra-osseous anchorage of dental prostheses. I. Experimental studies. , 1969, Scandinavian journal of plastic and reconstructive surgery.