Scable and interactive visual analysis of financal wire transactions for fraud detection

Large financial institutions such as Bank of America handle hundreds of thousands of wire transactions per day. Although most transactions are legitimate, these institutions have legal and financial obligations to discover those that are suspicious. With the methods of fraudulent activities ever changing, searching on predefined patterns is often insufficient in detecting previously undiscovered methods. In this paper, we present a set of coordinated visualizations based on identifying specific keywords within the wire transactions. The different views used in our system depict relationships among keywords and accounts over time. Furthermore, we introduce a search-by-example technique, which extracts accounts that show similar transaction patterns. Our system can be connected to a database to handle millions of transactions and still preserve high interactivity. In collaboration with the Anti-Money Laundering division at Bank of America, we demonstrate that using our tool, investigators are able to detect accounts and transactions that exhibit suspicious behaviors.

[1]  James J. Thomas,et al.  Visualizing the non-visual: spatial analysis and interaction with information from text documents , 1995, Proceedings of Visualization 1995 Conference.

[2]  Pat Hanrahan,et al.  Multiscale Visualization Using Data Cubes InfoVis 2002 Best Paper , 2002 .

[3]  Ben Shneiderman,et al.  Interactively Exploring Hierarchical Clustering Results , 2002, Computer.

[4]  Michael Stonebraker,et al.  Tioga-2: a direct manipulation database visualization environment , 1996, Proceedings of the Twelfth International Conference on Data Engineering.

[5]  James Abello,et al.  Matrix Zoom: A Visual Interface to Semi-External Graphs , 2004 .

[6]  Jean-Daniel Fekete,et al.  MatrixExplorer: a Dual-Representation System to Explore Social Networks , 2006, IEEE Transactions on Visualization and Computer Graphics.

[7]  Chris North,et al.  Snap-together visualization: a user interface for coordinating visualizations via relational schemata , 2000, AVI '00.

[8]  Lucy T. Nowell,et al.  ThemeRiver: Visualizing Thematic Changes in Large Document Collections , 2002, IEEE Trans. Vis. Comput. Graph..

[9]  Stephen G. Eick,et al.  Visual Discovery and Analysis , 2000, IEEE Trans. Vis. Comput. Graph..

[10]  Allison Woodruff,et al.  Guidelines for using multiple views in information visualization , 2000, AVI '00.

[11]  Jarke J. van Wijk,et al.  Cluster and Calendar Based Visualization of Time Series Data , 1999, INFOVIS.

[12]  Ramana Rao,et al.  The table lens: merging graphical and symbolic representations in an interactive focus + context visualization for tabular information , 1994, CHI '94.

[13]  Jonathan C. Roberts,et al.  A coordination model for exploratory multiview visualization , 2003, Proceedings International Conference on Coordinated and Multiple Views in Exploratory Visualization - CMV 2003 -.

[14]  Chris North,et al.  Snap-together visualization: can users construct and operate coordinated visualizations? , 2000, Int. J. Hum. Comput. Stud..

[15]  Jean-Daniel Fekete,et al.  Peeking in solver strategies using explanations visualization of dynamic graphs for constraint programming , 2005, SoftVis '05.

[16]  Pat Hanrahan,et al.  Multiscale visualization using data cubes , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[17]  Erkki Mäkinen,et al.  Constructing and Reconstructing the Reorderable Matrix , 2005, Inf. Vis..

[18]  Hans-Peter Kriegel,et al.  Visual feedback in querying large databases , 1993, Proceedings Visualization '93.

[19]  Daniel A. Keim,et al.  Pixel-Oriented Visualization Techniques for Exploring Very Large Data Bases , 1996 .

[20]  Chris North,et al.  A user interface for coordinating visualizations based on relational schemata: snap-together visualization , 2000 .

[21]  Daniel A. Keim,et al.  Designing Pixel-Oriented Visualization Techniques: Theory and Applications , 2000, IEEE Trans. Vis. Comput. Graph..

[22]  Jock D. Mackinlay,et al.  Visualizing the evolution of Web ecologies , 1998, CHI.

[23]  Philippe Castagliola,et al.  On the Readability of Graphs Using Node-Link and Matrix-Based Representations: A Controlled Experiment and Statistical Analysis , 2005, Inf. Vis..

[24]  Ben Shneiderman,et al.  Interactively Exploring Hierarchical Clustering Results , 2003 .

[25]  William Ribarsky,et al.  WireVis: Visualization of Categorical, Time-Varying Data From Financial Transactions , 2007, 2007 IEEE Symposium on Visual Analytics Science and Technology.

[26]  Ben Shneiderman,et al.  Dynamic query tools for time series data sets: timebox widgets for interactive exploration , 2004 .