Fibrillar Constructs from Multilevel Hierarchical Self‐Assembly of Discotic and Calamitic Supramolecular Motifs

We here report on polymeric solid‐state self‐assembly leading to organization over six length scales, ranging from the molecular scale up to the macroscopic length scale. We combine several concepts, i.e., rod‐like helical and disc‐like liquid crystallinity, block copolymer self‐assembly, DNA‐like interactions to form an ionic polypeptide–nucleotide complex and packing frustration to construct mesoscale fibrils. Ionic complexation of anionic deoxyguanosine monophosphate (dGMP) and triblock coil–rod–coil copolypeptides is used with cationic end blocks and a helical rod‐like midblock. The guanines undergo Hoogsteen pairing to form supramolecular discs, they π‐stack into columns that self‐assemble into hexagonal arrays that are controlled by the end blocks. Packing frustration between the helical rods from the block copolymer midblock and the discotic motif limits the lateral growth of the assembly thus affording mesoscale fibrils, which in turn, form an open fibrillar network. The concepts suggest new rational methodologies to construct structures on multiple length scales in order to tune polymer properties.

[1]  Gang Wu,et al.  Direct NMR detection of alkali metal ions bound to G-quadruplex DNA. , 2008, Journal of the American Chemical Society.

[2]  Arne Thomas,et al.  Mimicking biosilicification: programmed coassembly of peptide-polymer nanotapes and silica. , 2007, Angewandte Chemie.

[3]  C. Tschierske Liquid crystal engineering--new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering. , 2007, Chemical Society reviews.

[4]  O. Ikkala,et al.  Architecturally induced multiresponsive vesicles from well-defined polypeptides: formation of gene vehicles. , 2007, Biomacromolecules.

[5]  Matthew D. Green,et al.  Multiple Hydrogen Bonding for the Noncovalent Attachment of Ionic Functionality in Triblock Copolymers , 2007 .

[6]  Andreas Herrmann,et al.  DNA meets synthetic polymers--highly versatile hybrid materials. , 2007, Organic & biomolecular chemistry.

[7]  Jie Fu,et al.  High two-photon cross-sections in bis(diarylaminostyryl) chromophores with electron-rich heterocycle and bis(heterocycle)vinylene bridges. , 2007, Chemical communications.

[8]  Jeffery T. Davis,et al.  Supramolecular architectures generated by self-assembly of guanosine derivatives. , 2007, Chemical Society reviews.

[9]  C. Ober,et al.  Surface Induced Tilt Propagation in Thin Films of Semifluorinated Liquid Crystalline Side Chain Block Copolymers , 2007 .

[10]  H. Klok,et al.  Solid-State Structure, Organization and Properties of Peptide-Synthetic Hybrid Block Copolymers , 2007 .

[11]  N. Houbenov,et al.  Hierarchical ionic self-assembly of rod-comb block copolypeptide-surfactant complexes. , 2006, Biomacromolecules.

[12]  S. Stupp,et al.  The molecular basis of self-assembly of dendron-rod-coils into one-dimensional nanostructures. , 2006, Chemistry.

[13]  I. Manners,et al.  Self-assembly of dendron-helical polypeptide copolymers: organogels and lyotropic liquid crystals. , 2006, Chemical communications.

[14]  M. Antonietti,et al.  DNA-analogous structures from deoxynucleophosphates and polylysine by ionic self-assembly. , 2006, Soft matter.

[15]  Christof M Niemeyer,et al.  Rational design of DNA nanoarchitectures. , 2006, Angewandte Chemie.

[16]  H. Schlaad Solution properties of polypeptide-based copolymers , 2006 .

[17]  Gang Wu,et al.  Direct NMR detection of the "invisible" alkali metal cations tightly bound to G-quadruplex structures. , 2005, Biochemical and biophysical research communications.

[18]  N. Abbott,et al.  Self-assembly of surfactants and phospholipids at interfaces between aqueous phases and thermotropic liquid crystals , 2005 .

[19]  N. Hadjichristidis,et al.  Well‐defined linear multiblock and branched polypeptides by linking chemistry , 2005 .

[20]  S. Grzesiek,et al.  Characterization of the cation and temperature dependence of DNA quadruplex hydrogen bond properties using high-resolution NMR. , 2005, Journal of the American Chemical Society.

[21]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[22]  Jong-Hyun Ahn,et al.  Structural inversion in 3-D hexagonal organization of coil-rod-coil molecule. , 2005, Chemical communications.

[23]  G. Floudas Effects of pressure on systems with intrinsic orientational order , 2004 .

[24]  Edwin L. Thomas,et al.  Anisotropic Micellar Nanoobjects from Reactive Liquid Crystalline Rod−Coil Diblock Copolymers , 2004 .

[25]  D. Pochan,et al.  Rod-rod and rod-coil self-assembly and phase behavior of polypeptide diblock copolymers , 2004 .

[26]  Jeffery T. Davis G-quartets 40 years later: from 5'-GMP to molecular biology and supramolecular chemistry. , 2004, Angewandte Chemie.

[27]  Markus Antonietti,et al.  Ionic Self‐Assembly: Facile Synthesis of Supramolecular Materials , 2003 .

[28]  J. Rodríguez-Hernández,et al.  Hierarchical Self-Assembly of Poly(γ-benzyl-l-glutamate)−Poly(ethylene glycol)−Poly(γ-benzyl-l-glutamate) Rod−Coil−Rod Triblock Copolymers , 2003 .

[29]  J. Brédas,et al.  Supramolecular organization in block copolymers containing a conjugated segment: a joint AFM/molecular modeling study , 2003 .

[30]  J. Prausnitz,et al.  Effect of secondary structure on the potential of mean force for poly-L-lysine in the alpha-helix and beta-sheet conformations. , 2002, Biophysical chemistry.

[31]  A. Thünemann Polyelectrolyte–surfactant complexes (synthesis, structure and materials aspects) , 2002 .

[32]  O. Ikkala,et al.  Functional Materials Based on Self-Assembly of Polymeric Supramolecules , 2002, Science.

[33]  S. Nguyen,et al.  DNA-block copolymer conjugates. , 2001, Journal of the American Chemical Society.

[34]  G. Fredrickson,et al.  PCHE-based pentablock copolymers : Evolution of a new plastic , 2001 .

[35]  K. Guarini,et al.  Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. , 2000, Science.

[36]  Matthias Bremer,et al.  Nematic Liquid Crystals for Active Matrix Displays: Molecular Design and Synthesis. , 2000, Angewandte Chemie.

[37]  S. Picken,et al.  Synthesis and characterization of a novel liquid crystalline polymer showing a nematic columnar to nematic discotic phase transition , 2000 .

[38]  G. Fredrickson,et al.  Block Copolymers—Designer Soft Materials , 1999 .

[39]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[40]  Edwin L. Thomas,et al.  Competing Interactions and Levels of Ordering in Self-Organizing Polymeric Materials , 1997 .

[41]  A. C. O'sullivan Cellulose: the structure slowly unravels , 1997, Cellulose.

[42]  G. Fredrickson,et al.  Block copolymer thermodynamics: theory and experiment. , 1990, Annual review of physical chemistry.

[43]  B. Gallot,et al.  Block copolymers with a polyvinyl and a polypeptide block: factors governing the folding of the polypeptide chains , 1982 .

[44]  D. Davies,et al.  Helix formation by guanylic acid. , 1962, Proceedings of the National Academy of Sciences of the United States of America.